[日本語] English
- PDB-7ptr: Structure of hexameric S-layer protein from Haloferax volcanii archaea -

+
データを開く


IDまたはキーワード:

読み込み中...

-
基本情報

登録情報
データベース: PDB / ID: 7ptr
タイトルStructure of hexameric S-layer protein from Haloferax volcanii archaea
要素Cell surface glycoprotein
キーワードSTRUCTURAL PROTEIN / S-layer csg
機能・相同性
機能・相同性情報


S-layer / cell wall organization / extracellular region / plasma membrane
類似検索 - 分子機能
Surface glycoprotein signal peptide / Major cell surface glycoprotein / PGF-CTERM archaeal protein-sorting signal / PGF-CTERM motif
類似検索 - ドメイン・相同性
beta-D-glucopyranose / Cell surface glycoprotein
類似検索 - 構成要素
生物種Haloferax volcanii DS2 (古細菌)
手法電子顕微鏡法 / 単粒子再構成法 / クライオ電子顕微鏡法 / 解像度: 3.46 Å
データ登録者von Kuegelgen, A. / Bharat, T.A.M.
資金援助 英国, 3件
組織認可番号
Wellcome Trust202231/Z/16/Z
Other privateVallee Scholarship 英国
Leverhulme TrustPhilip Leverhulme Prize
引用ジャーナル: Cell Rep / : 2021
タイトル: Complete atomic structure of a native archaeal cell surface.
著者: Andriko von Kügelgen / Vikram Alva / Tanmay A M Bharat /
要旨: Many prokaryotic cells are covered by an ordered, proteinaceous, sheet-like structure called a surface layer (S-layer). S-layer proteins (SLPs) are usually the highest copy number macromolecules in ...Many prokaryotic cells are covered by an ordered, proteinaceous, sheet-like structure called a surface layer (S-layer). S-layer proteins (SLPs) are usually the highest copy number macromolecules in prokaryotes, playing critical roles in cellular physiology such as blocking predators, scaffolding membranes, and facilitating environmental interactions. Using electron cryomicroscopy of two-dimensional sheets, we report the atomic structure of the S-layer from the archaeal model organism Haloferax volcanii. This S-layer consists of a hexagonal array of tightly interacting immunoglobulin-like domains, which are also found in SLPs across several classes of archaea. Cellular tomography reveal that the S-layer is nearly continuous on the cell surface, completed by pentameric defects in the hexagonal lattice. We further report the atomic structure of the SLP pentamer, which shows markedly different relative arrangements of SLP domains needed to complete the S-layer. Our structural data provide a framework for understanding cell surfaces of archaea at the atomic level.
履歴
登録2021年9月27日登録サイト: PDBE / 処理サイト: PDBE
改定 1.02021年12月15日Provider: repository / タイプ: Initial release

-
構造の表示

ムービー
  • 登録構造単位
  • Jmolによる作画
  • ダウンロード
  • 単純化した表面モデル + あてはめた原子モデル
  • マップデータ: EMDB-13634
  • Jmolによる作画
  • ダウンロード
  • EMマップとの重ね合わせ
  • マップデータ: EMDB-13634
  • UCSF Chimeraによる作画
  • ダウンロード
ムービービューア
構造ビューア分子:
MolmilJmol/JSmol

ダウンロードとリンク

-
集合体

登録構造単位
A: Cell surface glycoprotein
B: Cell surface glycoprotein
C: Cell surface glycoprotein
D: Cell surface glycoprotein
E: Cell surface glycoprotein
F: Cell surface glycoprotein
ヘテロ分子


分子量 (理論値)分子数
合計 (水以外)494,49842
ポリマ-490,5346
非ポリマー3,96436
00
1


  • 登録構造と同一
  • 登録者が定義した集合体
  • 根拠: microscopy
タイプ名称対称操作
identity operation1_5551
Buried area20500 Å2
ΔGint-65 kcal/mol
Surface area188040 Å2

-
要素

#1: タンパク質
Cell surface glycoprotein / S-layer glycoprotein


分子量: 81755.602 Da / 分子数: 6 / 由来タイプ: 天然 / 由来: (天然) Haloferax volcanii DS2 (古細菌) / Plasmid details: Allers et al 2004 / 参照: UniProt: P25062
#2: 化合物
ChemComp-CA / CALCIUM ION / カルシウムジカチオン


分子量: 40.078 Da / 分子数: 18 / 由来タイプ: 合成 / : Ca / タイプ: SUBJECT OF INVESTIGATION
#3: 糖
ChemComp-BGC / beta-D-glucopyranose / beta-D-glucose / D-glucose / glucose / β-D-グルコピラノ-ス


タイプ: D-saccharide, beta linking / 分子量: 180.156 Da / 分子数: 18 / 由来タイプ: 合成 / : C6H12O6 / タイプ: SUBJECT OF INVESTIGATION
識別子タイププログラム
DGlcpbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
b-D-glucopyranoseCOMMON NAMEGMML 1.0
b-D-GlcpIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcSNFG CARBOHYDRATE SYMBOLGMML 1.0
研究の焦点であるリガンドがあるかY

-
実験情報

-
実験

実験手法: 電子顕微鏡法
EM実験試料の集合状態: 2D ARRAY / 3次元再構成法: 単粒子再構成法

-
試料調製

構成要素名称: Structure of hexameric S-layer protein csg / タイプ: COMPLEX / 詳細: Structure of hexameric S-layer protein csg / Entity ID: #1 / 由来: NATURAL
分子量実験値: NO
由来(天然)生物種: Haloferax volcanii DS2 (古細菌) / 細胞内の位置: Cell surface
緩衝液pH: 7.5
詳細: Buffer solutions were prepared fresh from sterile filtered concentrated stocksolutions. Solutions were filtered through a 0.22 um filter to avoid microbial contamination and degassed using a ...詳細: Buffer solutions were prepared fresh from sterile filtered concentrated stocksolutions. Solutions were filtered through a 0.22 um filter to avoid microbial contamination and degassed using a vacuum fold pump. The pH of the HEPES stock solution was adjusted with sodium hydroxide at 4 deg C. 15 mM Calcium chloride was added 15 minutes before vitrification.
緩衝液成分
ID濃度名称Buffer-ID
120 mMHEPESC8H18N2O4S1
2150 mMmagnesium chlorideMgCl21
315 mMcalcium chlorideCaCl21
40.65 % (w/v)CHAPS detergentC32H58N2O7S1
試料濃度: 3.2 mg/ml / 包埋: NO / シャドウイング: NO / 染色: NO / 凍結: YES
詳細: Purified csg protein mixed with 15 mM CaCl2 after 15 minutes incubation.
試料支持詳細: 20 seconds, 15 mA / グリッドの材料: COPPER/RHODIUM / グリッドのサイズ: 200 divisions/in. / グリッドのタイプ: Quantifoil R2/2
急速凍結装置: FEI VITROBOT MARK IV / 凍結剤: ETHANE / 湿度: 100 % / 凍結前の試料温度: 283.15 K
詳細: Vitrobot options: Blot time 4.5 seconds, Blot force -10,1, Wait time 10 seconds, Drain time 0.5 seconds

-
電子顕微鏡撮影

実験機器
モデル: Titan Krios / 画像提供: FEI Company
顕微鏡モデル: FEI TITAN KRIOS
詳細: EPU software with faster acquisition mode AFIS (Aberration Free Image Shift).
電子銃電子線源: FIELD EMISSION GUN / 加速電圧: 300 kV / 照射モード: FLOOD BEAM
電子レンズモード: BRIGHT FIELD / 倍率(公称値): 81000 X / 倍率(補正後): 81000 X / 最大 デフォーカス(公称値): 4000 nm / 最小 デフォーカス(公称値): 1000 nm / Calibrated defocus min: 1000 nm / 最大 デフォーカス(補正後): 4000 nm / Cs: 2.7 mm / C2レンズ絞り径: 50 µm / アライメント法: ZEMLIN TABLEAU
試料ホルダ凍結剤: NITROGEN
試料ホルダーモデル: FEI TITAN KRIOS AUTOGRID HOLDER
最高温度: 70 K / 最低温度: 70 K
撮影平均露光時間: 3.4 sec. / 電子線照射量: 51.441 e/Å2
フィルム・検出器のモデル: GATAN K3 BIOQUANTUM (6k x 4k)
撮影したグリッド数: 2 / 実像数: 18468
詳細: Images were collected in two sessions movie-mode and subjected to 3.4 seconds of exposure where a total dose of 49 or 51.441 e-/A2 was applied, and 40 frames were recorded per movie. A total ...詳細: Images were collected in two sessions movie-mode and subjected to 3.4 seconds of exposure where a total dose of 49 or 51.441 e-/A2 was applied, and 40 frames were recorded per movie. A total of 18468 movies were collected in two sessions with the same microscope and settings.
電子光学装置エネルギーフィルター名称: GIF Quantum LS / エネルギーフィルタースリット幅: 20 eV
画像スキャン: 5760 / : 4092

-
解析

ソフトウェア名称: PHENIX / バージョン: 1.19_4092: / 分類: 精密化
EMソフトウェア
ID名称バージョンカテゴリ詳細
2Topaz0.2.5粒子像選択ResNet8 trained model
3EPU画像取得
5CTFFIND4.1.13CTF補正CTFFIND4 was used as implemented in RELION 3.1
8Coot0.9.2-preモデルフィッティング
10RELION3.1初期オイラー角割当
11RELION3.1最終オイラー角割当
12RELION3.1分類
13RELION3.13次元再構成
14PHENIX1.19-4092モデル精密化
画像処理詳細: Movies were clustered into optics groups based on the XML meta-data of the data-collection software EPU (ThermoFisher) using a k-means algorithm implemented in EPU_group_AFIS (https://github. ...詳細: Movies were clustered into optics groups based on the XML meta-data of the data-collection software EPU (ThermoFisher) using a k-means algorithm implemented in EPU_group_AFIS (https://github.com/DustinMorado/EPU_group_AFIS). Imported movies were motion-corrected, dose weighted, and Fourier cropped (2x) with MotionCor2 (Zheng et al., 2017) implemented in RELION3.1 (Zivanov et al., 2018). Contrast transfer functions (CTFs) of the resulting motion-corrected micrographs were estimated using CTFFIND4 (Rohou and Grigorieff, 2015).
CTF補正詳細: RELION refinement with in-built CTF correction. The function is similar to a Wiener filter, so amplitude correction included.
タイプ: PHASE FLIPPING AND AMPLITUDE CORRECTION
粒子像の選択選択した粒子像数: 10558369
詳細: Top and tilted views were manually picked at the central hexameric axis. Manually picked particles were extracted in 4x downsampled 100 x 100 boxes and classified using reference-free 2D ...詳細: Top and tilted views were manually picked at the central hexameric axis. Manually picked particles were extracted in 4x downsampled 100 x 100 boxes and classified using reference-free 2D classification inside RELION3.1 (Zivanov et al., 2020). Class averages centered at a hexameric axis were used to automatically pick particles inside RELION3.1. Automatically picked particles were extracted in 4x downsampled 100x100 pixel boxes and classified using reference-free 2D classification. Particle coordinates belonging to class averages centered at the hexameric axis were used to train TOPAZ (Bepler et al., 2019) in 5x downsampled micrographs with the neural network architecture ResNet8. For the final reconstruction, particles were picked using TOPAZ and the previously trained neural network above. Additionally, top and bottom views were picked using the reference-based autopicker inside RELION3.1, which were not readily identified by TOPAZ. Particles were extracted in 4x downsampled 100 x 100 boxes and classified using reference-free 2D classification inside RELION3.1. Particles belonging to class averages centered at the hexameric axis were combined, and particles within 100 angstrom were removed to prevent duplication after alignment.
対称性点対称性: C6 (6回回転対称)
3次元再構成解像度: 3.46 Å / 解像度の算出法: FSC 0.143 CUT-OFF / 粒子像の数: 1087798 / アルゴリズム: FOURIER SPACE
詳細: Particles from classes with the same curvature were combined, re-extracted in 400 x 400 boxes and subjected to a focused 3D auto refinement on the central 6 subunits using the scaled and ...詳細: Particles from classes with the same curvature were combined, re-extracted in 400 x 400 boxes and subjected to a focused 3D auto refinement on the central 6 subunits using the scaled and lowpass filtered output from the 3D classification as a starting model. Per-particle defocus, anisotropy magnification and higher-order aberrations were refined inside RELION3.1, followed by another round of focused 3D auto refinement and Bayesian particle polishing (Zivanov et al., 2020).
クラス平均像の数: 1 / 対称性のタイプ: POINT
原子モデル構築B value: 143.26 / プロトコル: AB INITIO MODEL / 空間: REAL / Target criteria: Best Fit
詳細: The boundaries of the six Ig-like domains, D1-D6, were predicted using HHpred (Steinegger et al., 2019) in default settings within the MPI Bioinformatics Toolkit (Zimmermann et al., 2018). ...詳細: The boundaries of the six Ig-like domains, D1-D6, were predicted using HHpred (Steinegger et al., 2019) in default settings within the MPI Bioinformatics Toolkit (Zimmermann et al., 2018). Subsequently, structural models for these domains were built using the Robetta structure prediction server, employing the deep learning-based modelling method TrRosetta (Yang et al., 2020). The obtained structural models of domains D3-D6 resulted in an overall fit into the hexameric cryo-EM map of csg from the reconstituted sheets. D1-D2 deviated significantly from any obtained homology models, and for those domains, the carbon backbone of the csg protein was manually traced through a single subunit of the hexameric cryo-EM density using Coot (Emsley and Cowtan, 2004). Due to the edge effect of the box used in the refinement of the 3.5 angstrom map, parts of D6 displayed edge artefacts. These artefacts were removed using single-particle cryo-EM refinement in a larger box, which led to an overall slightly lower resolution (3.8 angstrom) but allowed fitting of the D6 homology model unambiguously. Following initial manual building (for D1-D2) or fitting in of structural models (for D3-D6), side chains were assigned in regions with density corresponding to characteristic aromatic residues allowing us to deduce the register of the amino acid sequence in the map. Another important check of the model building was the position of known glycan positions, which were readily assigned based on large unexplained densities on characteristic asparagine residues. The atomic model was then placed into the hexameric map in six copies and subjected to several rounds of refinement using refmac5 (Murshudov et al., 2011) inside the CCP-EM software suite (Burnley et al., 2017) and PHENIX (Liebschner et al., 2019), followed by manually rebuilding in Coot (Emsley and Cowtan, 2004). Model validation was performed in PHENIX and CCP-EM.

+
万見について

-
お知らせ

-
2022年2月9日: EMDBエントリの付随情報ファイルのフォーマットが新しくなりました

EMDBエントリの付随情報ファイルのフォーマットが新しくなりました

  • EMDBのヘッダファイルのバージョン3が、公式のフォーマットとなりました。
  • これまでは公式だったバージョン1.9は、アーカイブから削除されます。

関連情報:EMDBヘッダ

外部リンク:wwPDBはEMDBデータモデルのバージョン3へ移行します

-
2020年8月12日: 新型コロナ情報

新型コロナ情報

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

新ページ: EM Navigatorに新型コロナウイルスの特設ページを開設しました。

関連情報:Covid-19情報 / 2020年3月5日: 新型コロナウイルスの構造データ

+
2020年3月5日: 新型コロナウイルスの構造データ

新型コロナウイルスの構造データ

関連情報:万見生物種 / 2020年8月12日: 新型コロナ情報

外部リンク:COVID-19特集ページ - PDBj / 今月の分子2020年2月:コロナウイルスプロテーアーゼ

+
2019年1月31日: EMDBのIDの桁数の変更

EMDBのIDの桁数の変更

  • EMDBエントリに付与されているアクセスコード(EMDB-ID)は4桁の数字(例、EMD-1234)でしたが、間もなく枯渇します。これまでの4桁のID番号は4桁のまま変更されませんが、4桁の数字を使い切った後に発行されるIDは5桁以上の数字(例、EMD-12345)になります。5桁のIDは2019年の春頃から発行される見通しです。
  • EM Navigator/万見では、接頭語「EMD-」は省略されています。

関連情報:Q: 「EMD」とは何ですか? / 万見/EM NavigatorにおけるID/アクセスコードの表記

外部リンク:EMDB Accession Codes are Changing Soon! / PDBjへお問い合わせ

+
2017年7月12日: PDB大規模アップデート

PDB大規模アップデート

  • 新バージョンのPDBx/mmCIF辞書形式に基づくデータがリリースされました。
  • 今回の更新はバージョン番号が4から5になる大規模なもので、全エントリデータの書き換えが行われる「Remediation」というアップデートに該当します。
  • このバージョンアップで、電子顕微鏡の実験手法に関する多くの項目の書式が改定されました(例:em_softwareなど)。
  • EM NavigatorとYorodumiでも、この改定に基づいた表示内容になります。

外部リンク:wwPDB Remediation / OneDepデータ基準に準拠した、より強化された内容のモデル構造ファイルが、PDBアーカイブで公開されました。

-
万見 (Yorodumi)

幾万の構造データを、幾万の視点から

  • 万見(Yorodumi)は、EMDB/PDB/SASBDBなどの構造データを閲覧するためのページです。
  • EM Navigatorの詳細ページの後継、Omokage検索のフロントエンドも兼ねています。

関連情報:EMDB / PDB / SASBDB / 3つのデータバンクの比較 / 万見検索 / 2016年8月31日: 新しいEM Navigatorと万見 / 万見文献 / Jmol/JSmol / 機能・相同性情報 / 新しいEM Navigatorと万見の変更点

他の情報も見る