[English] 日本語
Yorodumi- EMDB-19825: Subtomogram average of nucleosomes annotated by template matching... -
+
Open data
-
Basic information
| Entry | ![]() | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Title | Subtomogram average of nucleosomes annotated by template matching in isolated mitotic chromosomes | |||||||||
Map data | Primary map | |||||||||
Sample |
| |||||||||
Keywords | Nucleosome / CELL CYCLE | |||||||||
| Biological species | ![]() | |||||||||
| Method | subtomogram averaging / cryo EM / Resolution: 12.89 Å | |||||||||
Authors | Patra G / Harastani M / Eltsov M | |||||||||
| Funding support | France, 2 items
| |||||||||
Citation | Journal: Nat Commun / Year: 2025Title: Template Learning: Deep learning with domain randomization for particle picking in cryo-electron tomography. Authors: Mohamad Harastani / Gurudatt Patra / Charles Kervrann / Mikhail Eltsov / ![]() Abstract: Cryo-electron tomography (cryo-ET) enables three-dimensional visualization of biomolecules and cellular components in their near-native state. A key challenge in cryo-ET data analysis is particle ...Cryo-electron tomography (cryo-ET) enables three-dimensional visualization of biomolecules and cellular components in their near-native state. A key challenge in cryo-ET data analysis is particle picking, often performed by template matching, which relies on cross-correlating tomograms with known structural templates. Current deep learning-based methods improve accuracy but require labor-intensive annotated datasets for supervised training. Here, we present Template Learning, a technique that combines deep learning accuracy with the convenience of training on biomolecular templates via domain randomization. Template Learning automates synthetic dataset generation, modeling molecular crowding, structural variability, and data acquisition variation, thereby reducing or eliminating the need for annotated experimental data. We show that models trained using Template Learning, and optionally fine-tuned with experimental data, outperform those trained solely on annotations. Furthermore, Template Learning provides higher precision and more uniform orientation detection than template matching, particularly for small non-spherical particles. Template Learning software is open-source, Python-based, and GPU/CPU parallelized. | |||||||||
| History |
|
-
Structure visualization
| Supplemental images |
|---|
-
Downloads & links
-EMDB archive
| Map data | emd_19825.map.gz | 4.6 MB | EMDB map data format | |
|---|---|---|---|---|
| Header (meta data) | emd-19825-v30.xml emd-19825.xml | 16.5 KB 16.5 KB | Display Display | EMDB header |
| FSC (resolution estimation) | emd_19825_fsc.xml | 5.9 KB | Display | FSC data file |
| Images | emd_19825.png | 31.1 KB | ||
| Masks | emd_19825_msk_1.map | 8 MB | Mask map | |
| Filedesc metadata | emd-19825.cif.gz | 4.4 KB | ||
| Others | emd_19825_half_map_1.map.gz emd_19825_half_map_2.map.gz | 6 MB 6 MB | ||
| Archive directory | http://ftp.pdbj.org/pub/emdb/structures/EMD-19825 ftp://ftp.pdbj.org/pub/emdb/structures/EMD-19825 | HTTPS FTP |
-Related structure data
-
Links
| EMDB pages | EMDB (EBI/PDBe) / EMDataResource |
|---|---|
| Related items in Molecule of the Month |
-
Map
| File | Download / File: emd_19825.map.gz / Format: CCP4 / Size: 8 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES) | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | Primary map | ||||||||||||||||||||||||||||||||||||
| Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
| Voxel size | X=Y=Z: 4.15 Å | ||||||||||||||||||||||||||||||||||||
| Density |
| ||||||||||||||||||||||||||||||||||||
| Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
| Details | EMDB XML:
|
-Supplemental data
-Mask #1
| File | emd_19825_msk_1.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-Half map: half map 2
| File | emd_19825_half_map_1.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | half map 2 | ||||||||||||
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-Half map: half map 1
| File | emd_19825_half_map_2.map | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Annotation | half map 1 | ||||||||||||
| Projections & Slices |
| ||||||||||||
| Density Histograms |
-
Sample components
-Entire : Nucleosome
| Entire | Name: Nucleosome |
|---|---|
| Components |
|
-Supramolecule #1: Nucleosome
| Supramolecule | Name: Nucleosome / type: complex / ID: 1 / Parent: 0 |
|---|---|
| Source (natural) | Organism: ![]() |
| Molecular weight | Theoretical: 200 KDa |
-Experimental details
-Structure determination
| Method | cryo EM |
|---|---|
Processing | subtomogram averaging |
| Aggregation state | particle |
-
Sample preparation
| Buffer | pH: 9 |
|---|---|
| Grid | Model: Quantifoil / Material: COPPER / Mesh: 200 / Support film - Material: CARBON / Support film - topology: HOLEY |
| Vitrification | Cryogen name: ETHANE |
-
Electron microscopy
| Microscope | TFS KRIOS |
|---|---|
| Image recording | Film or detector model: GATAN K3 (6k x 4k) / Detector mode: COUNTING / Average electron dose: 3.2 e/Å2 |
| Electron beam | Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN |
| Electron optics | Illumination mode: OTHER / Imaging mode: BRIGHT FIELD / Cs: 2.7 mm / Nominal defocus max: 4.5 µm / Nominal defocus min: 2.5 µm |
| Sample stage | Cooling holder cryogen: NITROGEN |
| Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
Movie
Controller
About Yorodumi



Keywords
Authors
France, 2 items
Citation








Z (Sec.)
Y (Row.)
X (Col.)












































Processing
FIELD EMISSION GUN

