[English] 日本語
Yorodumi
- EMDB-12400: Mycobacterium smegmatis ATP synthase Peripheral Stalk state 1e -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-12400
TitleMycobacterium smegmatis ATP synthase Peripheral Stalk state 1e
Map dataMsmeg ATP synthase PS state 1e map
Sample
  • Complex: Mycobacterium smegmatis ATP synthase
Function / homology
Function and homology information


proton motive force-driven plasma membrane ATP synthesis / proton-transporting ATP synthase complex, coupling factor F(o) / photosynthetic electron transport in photosystem I / proton-transporting ATP synthase complex, catalytic core F(1) / photosynthetic electron transport in photosystem II / H+-transporting two-sector ATPase / proton-transporting ATPase activity, rotational mechanism / proton-transporting ATP synthase activity, rotational mechanism / ADP binding / hydrolase activity ...proton motive force-driven plasma membrane ATP synthesis / proton-transporting ATP synthase complex, coupling factor F(o) / photosynthetic electron transport in photosystem I / proton-transporting ATP synthase complex, catalytic core F(1) / photosynthetic electron transport in photosystem II / H+-transporting two-sector ATPase / proton-transporting ATPase activity, rotational mechanism / proton-transporting ATP synthase activity, rotational mechanism / ADP binding / hydrolase activity / lipid binding / ATP hydrolysis activity / ATP binding / plasma membrane
Similarity search - Function
ATP synthase, F0 complex, subunit b, bacterial / F-type ATP synthase subunit B-like, membrane domain superfamily / ATP synthase, F0 complex, subunit A, bacterial/chloroplast / ATP synthase, F0 complex, subunit b/b', bacterial/chloroplast / ATP synthase B/B' CF(0) / ATP synthase, F0 complex, subunit C, bacterial/chloroplast / ATP synthase, F0 complex, subunit A / ATP synthase, F0 complex, subunit A, active site / ATP synthase, F0 complex, subunit A superfamily / ATP synthase A chain ...ATP synthase, F0 complex, subunit b, bacterial / F-type ATP synthase subunit B-like, membrane domain superfamily / ATP synthase, F0 complex, subunit A, bacterial/chloroplast / ATP synthase, F0 complex, subunit b/b', bacterial/chloroplast / ATP synthase B/B' CF(0) / ATP synthase, F0 complex, subunit C, bacterial/chloroplast / ATP synthase, F0 complex, subunit A / ATP synthase, F0 complex, subunit A, active site / ATP synthase, F0 complex, subunit A superfamily / ATP synthase A chain / ATP synthase a subunit signature. / ATPase, OSCP/delta subunit / ATP synthase delta (OSCP) subunit / ATP synthase, F1 complex, delta/epsilon subunit / ATP synthase, F1 complex, delta/epsilon subunit, N-terminal / F0F1 ATP synthase delta/epsilon subunit, N-terminal / ATP synthase, Delta/Epsilon chain, beta-sandwich domain / ATP synthase, F0 complex, subunit C / F1F0 ATP synthase subunit C superfamily / ATP synthase, F0 complex, subunit C, DCCD-binding site / ATP synthase c subunit signature. / ATP synthase, F1 complex, gamma subunit conserved site / ATP synthase gamma subunit signature. / ATP synthase, F1 complex, beta subunit / ATP synthase, alpha subunit, C-terminal domain superfamily / ATP synthase, F1 complex, gamma subunit / ATP synthase, F1 complex, gamma subunit superfamily / ATP synthase / ATP synthase, alpha subunit, C-terminal / ATP synthase, F1 complex, alpha subunit / ATP synthase, F1 complex, alpha subunit nucleotide-binding domain / ATP synthase alpha/beta chain, C terminal domain / V-ATPase proteolipid subunit C-like domain / F/V-ATP synthase subunit C superfamily / ATP synthase subunit C / ATPase, F1/V1 complex, beta/alpha subunit, C-terminal / ATP synthase subunit alpha, N-terminal domain-like superfamily / ATPase, F1/V1/A1 complex, alpha/beta subunit, N-terminal domain superfamily / ATPase, F1/V1/A1 complex, alpha/beta subunit, N-terminal domain / ATP synthase alpha/beta family, beta-barrel domain / ATPase, alpha/beta subunit, nucleotide-binding domain, active site / ATP synthase alpha and beta subunits signature. / ATPase, F1/V1/A1 complex, alpha/beta subunit, nucleotide-binding domain / ATP synthase alpha/beta family, nucleotide-binding domain / ATPases associated with a variety of cellular activities / AAA+ ATPase domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
ATP synthase epsilon chain / ATP synthase subunit beta / ATP synthase gamma chain / ATP synthase subunit alpha / ATP synthase subunit b-delta / ATP synthase subunit b / ATP synthase subunit c / ATP synthase subunit a
Similarity search - Component
Biological speciesMycolicibacterium smegmatis MC2 155 (bacteria)
Methodsingle particle reconstruction / cryo EM / Resolution: 4.15 Å
AuthorsPetri J / Montgomery MG / Spikes TE / Walker JE
Funding support United Kingdom, 2 items
OrganizationGrant numberCountry
Medical Research Council (MRC, United Kingdom)MR/M009858/1 United Kingdom
Medical Research Council (MRC, United Kingdom)MC_UU_00015/8 United Kingdom
CitationJournal: Proc Natl Acad Sci U S A / Year: 2021
Title: Structure of the ATP synthase from provides targets for treating tuberculosis.
Authors: Martin G Montgomery / Jessica Petri / Tobias E Spikes / John E Walker /
Abstract: The structure has been determined by electron cryomicroscopy of the adenosine triphosphate (ATP) synthase from This analysis confirms features in a prior description of the structure of the enzyme, ...The structure has been determined by electron cryomicroscopy of the adenosine triphosphate (ATP) synthase from This analysis confirms features in a prior description of the structure of the enzyme, but it also describes other highly significant attributes not recognized before that are crucial for understanding the mechanism and regulation of the mycobacterial enzyme. First, we resolved not only the three main states in the catalytic cycle described before but also eight substates that portray structural and mechanistic changes occurring during a 360° catalytic cycle. Second, a mechanism of auto-inhibition of ATP hydrolysis involves not only the engagement of the C-terminal region of an α-subunit in a loop in the γ-subunit, as proposed before, but also a "fail-safe" mechanism involving the b'-subunit in the peripheral stalk that enhances engagement. A third unreported characteristic is that the fused bδ-subunit contains a duplicated domain in its N-terminal region where the two copies of the domain participate in similar modes of attachment of the two of three N-terminal regions of the α-subunits. The auto-inhibitory plus the associated "fail-safe" mechanisms and the modes of attachment of the α-subunits provide targets for development of innovative antitubercular drugs. The structure also provides support for an observation made in the bovine ATP synthase that the transmembrane proton-motive force that provides the energy to drive the rotary mechanism is delivered directly and tangentially to the rotor via a Grotthuss water chain in a polar L-shaped tunnel.
History
DepositionFeb 17, 2021-
Header (metadata) releaseNov 3, 2021-
Map releaseNov 3, 2021-
UpdateNov 3, 2021-
Current statusNov 3, 2021Processing site: PDBe / Status: Released

-
Structure visualization

Movie
  • Surface view with section colored by density value
  • Surface level: 0.0109
  • Imaged by UCSF Chimera
  • Download
  • Surface view colored by cylindrical radius
  • Surface level: 0.0109
  • Imaged by UCSF Chimera
  • Download
Movie viewer
Structure viewerEM map:
SurfViewMolmilJmol/JSmol
Supplemental images

Downloads & links