[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleA bispecific antibody designed to act as a NRP2/PLXNA1 agonist mimics anticancer activity of SEMA3F.
Journal, issue, pagesJ Biol Chem, Vol. 302, Issue 2, Page 111056, Year 2025
Publish dateDec 13, 2025
AuthorsHonglei Tian / Chun Po Fung / Luke Burman / Yeeting E Chong / Changdong Liu / Yanyan Geng / Lam Yang / Man Wai Chow / Yingyi Zhang / Kwok Wa Hugo Ho / Guang Zhu / Zhenguo Wu / Xiang-Lei Yang / Zhiwen Xu / Leslie A Nangle /
PubMed AbstractNeuropilin-2 (NRP2) is a pleiotropic receptor with diverse roles across biological systems. Recent work detailed its role as an immunomodulatory receptor target that is currently being explored in ...Neuropilin-2 (NRP2) is a pleiotropic receptor with diverse roles across biological systems. Recent work detailed its role as an immunomodulatory receptor target that is currently being explored in clinical development for interstitial lung diseases, establishing it as a viable therapeutic target. To mediate its diverse effects, NRP2 interacts with endogenous ligands, including semaphorins (SEMAs) and vascular endothelial growth factors, signaling via ligand-induced heterodimerization with various receptor families. One of these ligands, SEMA3F exhibits well-documented tumor-suppressive activities mediated through NRP2 and plexinA1 (PLXNA1). Despite its observed benefits, SEMA3F is not therapeutically viable due to the multifaceted nature of its functions through non-NRP2-mediated interactions, leading to concerns around potential toxicity. Here, we describe development of bispecific antibodies (bsAbs) that dimerize PLXNA1 and NRP2, selectively mimicking the beneficial aspects of SEMA3F signaling as a basis for a novel anticancer therapy. Using a single B cell-based mAb discovery platform, anti-PLXNA1 mAbs with diverse lineages were generated and combined with anti-NRP2 mAbs to produce over 200 PLXNA1-NRP2 bsAbs. Antibodies were screened in cell-based assays (receptor dimerization, phospho-AKT, oncogene expression, and cell proliferation), yielding one bsAb capable of mimicking NRP2-mediated SEMA3F activities in all assays. Structural studies revealed that this bsAb binds to PLXNA1/NRP2 at sites distinct from the SEMA3F-binding site, but in a manner that allows proper spacing for receptor complex formation and flexibility of conformational changes for signaling. This study demonstrates the potential of these receptors as targets for agonistic bsAbs development and provides the groundwork for further exploration in tumor models.
External linksJ Biol Chem / PubMed:41391772 / PubMed Central
MethodsEM (single particle)
Resolution3.33 Å
Structure data

EMDB-61131, PDB-9j4c:
Cryo-EM structure of aPlexinA1-19-43 Fab in complex with PlexinA1 dimer
Method: EM (single particle) / Resolution: 3.33 Å

Source
  • homo sapiens (human)
  • mus musculus (house mouse)
KeywordsPROTEIN BINDING/IMMUNE SYSTEM / Signalling / Fab / Complex / PROTEIN BINDING / PROTEIN BINDING-IMMUNE SYSTEM complex

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more