[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleSwinging lever mechanism of myosin directly shown by time-resolved cryo-EM.
Journal, issue, pagesNature, Vol. 642, Issue 8067, Page 519-526, Year 2025
Publish dateApr 9, 2025
AuthorsDavid P Klebl / Sean N McMillan / Cristina Risi / Eva Forgacs / Betty Virok / Jennifer L Atherton / Sarah A Harris / Michele Stofella / Donald A Winkelmann / Frank Sobott / Vitold E Galkin / Peter J Knight / Stephen P Muench / Charlotte A Scarff / Howard D White /
PubMed AbstractMyosins produce force and movement in cells through interactions with F-actin. Generation of movement is thought to arise through actin-catalysed conversion of myosin from an ATP-generated primed ...Myosins produce force and movement in cells through interactions with F-actin. Generation of movement is thought to arise through actin-catalysed conversion of myosin from an ATP-generated primed (pre-powerstroke) state to a post-powerstroke state, accompanied by myosin lever swing. However, the initial, primed actomyosin state has never been observed, and the mechanism by which actin catalyses myosin ATPase activity is unclear. Here, to address these issues, we performed time-resolved cryogenic electron microscopy (cryo-EM) of a myosin-5 mutant having slow hydrolysis product release. Primed actomyosin was predominantly captured 10 ms after mixing primed myosin with F-actin, whereas post-powerstroke actomyosin predominated at 120 ms, with no abundant intermediate states detected. For detailed interpretation, cryo-EM maps were fitted with pseudo-atomic models. Small but critical changes accompany the primed motor binding to actin through its lower 50-kDa subdomain, with the actin-binding cleft open and phosphate release prohibited. Amino-terminal actin interactions with myosin promote rotation of the upper 50-kDa subdomain, closing the actin-binding cleft, and enabling phosphate release. The formation of interactions between the upper 50-kDa subdomain and actin creates the strong-binding interface needed for effective force production. The myosin-5 lever swings through 93°, predominantly along the actin axis, with little twisting. The magnitude of lever swing matches the typical step length of myosin-5 along actin. These time-resolved structures demonstrate the swinging lever mechanism, elucidate structural transitions of the power stroke, and resolve decades of conjecture on how myosins generate movement.
External linksNature / PubMed:40205053 / PubMed Central
MethodsEM (single particle)
Resolution3.9 - 4.9 Å
Structure data

EMDB-19013, PDB-8r9v:
CryoEM structure of the primed actomyosin-5a complex
Method: EM (single particle) / Resolution: 4.4 Å

EMDB-19030, PDB-8rbf:
CryoEM structure of the post-powerstroke actomyosin-5a complex
Method: EM (single particle) / Resolution: 4.2 Å

EMDB-19031, PDB-8rbg:
CryoEM structure of primed myosin-5a (ADP-Pi state)
Method: EM (single particle) / Resolution: 4.9 Å

EMDB-50594: Rigor actomyosin-5a complex
Method: EM (single particle) / Resolution: 3.9 Å

Chemicals

ChemComp-PO4:
PHOSPHATE ION

ChemComp-MG:
Unknown entry

ChemComp-ADP:
ADENOSINE-5'-DIPHOSPHATE / ADP, energy-carrying molecule*YM

Source
  • mus musculus (house mouse)
  • oryctolagus cuniculus (rabbit)
KeywordsMOTOR PROTEIN / Myosin / Actin / Actomyosin / Primed actomyosin

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more