[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleStructure of human green cone opsin yields insights into mechanisms underlying the rapid decay of its active, signaling state.
Journal, issue, pagesProc Natl Acad Sci U S A, Vol. 122, Issue 49, Page e2516318122, Year 2025
Publish dateDec 9, 2025
AuthorsWeekie Yao / Jonathan F Fay / David L Farrens /
PubMed AbstractCone opsins enable daylight vision and color discrimination. Like their dim-light cousin rhodopsin (Rho) found in rod cells, they use a covalently attached retinal ligand to sense light and initiate ...Cone opsins enable daylight vision and color discrimination. Like their dim-light cousin rhodopsin (Rho) found in rod cells, they use a covalently attached retinal ligand to sense light and initiate visual phototransduction by activating G proteins. Unfortunately, we know less about their structural properties, in part because their activated state is unstable-cone opsins release their retinal agonist within seconds after light activation, ~100× faster than Rho. To determine what causes this rapid release and how it affects G protein activation, we solved the structure of active-state, wild-type human green cone opsin (GCO) stabilized with a mini-G protein and then compared its structural and biophysical properties to Rho. Our results reveal unique features in the active-state GCO structure. These include i) a larger water channel connected to a larger retinal binding cavity, ii) a larger "hole" near the retinal Schiff base that could facilitate both retinal escape and water access; and iii) a potential anionic residue, E102, that lies within ~3.6 Å of the Schiff base. Our biophysical assays show that neutralizing E102 (mutant GCO) slows retinal release (~8×) from the receptor and increases G protein activation. Surprisingly, our kinetic studies suggest that entropic factors are the main cause for the faster retinal release from activated GCO. These unique attributes in GCO likely facilitate its function in bright daylight. These results support the proposal that rapid retinal release from an active-state cone opsin helps prevent signal saturation and enables rapid resetting of the receptor.
External linksProc Natl Acad Sci U S A / PubMed:41329744 / PubMed Central
MethodsEM (single particle)
Resolution2.9 Å
Structure data

EMDB-72798, PDB-9yda:
Cryo-EM structure of active human green cone opsin in complex with chimeric G protein (miniGist)
Method: EM (single particle) / Resolution: 2.9 Å

Chemicals

ChemComp-RET:
RETINAL

Source
  • homo sapiens (human)
  • mus musculus (house mouse)
KeywordsSIGNALING PROTEIN / G protein-coupled receptor / cone opsin

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more