[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleCurvature Generation and Engineering Principles from Multi-flagellin Flagellum.
Journal, issue, pagesACS Nano, Vol. 19, Issue 28, Page 25682-25696, Year 2025
Publish dateJul 22, 2025
AuthorsQing Lou / Hongcheng Fan / Yang Liu / Jeff F Miller / Yu Huang / Z Hong Zhou /
PubMed AbstractMotility driven by nanoscale flagella is vital to microbial survival and spread in fluid and structured environments. The absence of native flagellum structures, however, has limited our ...Motility driven by nanoscale flagella is vital to microbial survival and spread in fluid and structured environments. The absence of native flagellum structures, however, has limited our understanding of the mechanisms of microbial motility, hindering efforts to engineer microbe-based microbots for applications. Here, by cryogenic electron tomography (cryoET) and microscopy (cryoEM), we determined the structural basis of motility driven by the single flagellum anchored to one pole of MR-1 (), an electrogenic bacterium commonly used in biotechnology. The structures of the curved flagellum, representing the conformation during motion, are captured, allowing delineation of molecular interactions among the subunits of its three components─filament, hook, and hook-filament junction. The structures of the filament, i.e., the propeller, reveal varying compositions of the flagellin isoforms FlaA and FlaB throughout the filament. Distinct inter-subunit interactions along the 5-start direction are identified at residues 129 and 134, which are the major determinants of functional differences in motility for the two isoforms. The hook─the universal joint─has a significantly larger curvature than that of the filament, despite both containing 11 curvature-defining conformers of their subunits. Transition between the propeller and the universal joint is mediated by the hook-filament junction, composed of 11 subunits of FlgK and FlgL, reconciling the incompatibility between the filament and the hook. Correlating these compositional and structural transitions with varying levels of curvature in flagellar segments reveals the molecular mechanism enabling propulsive motility. Mechanistic understanding from could suggest engineering principles for nanoscale biomimetic systems.
External linksACS Nano / PubMed:40627653 / PubMed Central
MethodsEM (single particle)
Resolution2.9 - 6.1 Å
Structure data

EMDB-70983: CryoEM structure of hook-filament junction complex from Shewanella oneidensis
Method: EM (single particle) / Resolution: 6.1 Å

EMDB-70984: CryoEM structure of curved flagellar filament from Shewanella oneidensis
Method: EM (single particle) / Resolution: 3.2 Å

EMDB-70985, PDB-9oxj:
CryoEM structure of FlaA filament from Shewanella oneidensis
Method: EM (single particle) / Resolution: 3.5 Å

EMDB-70986, PDB-9oxk:
CryoEM structure of FlaB filament from Shewanella oneidensis
Method: EM (single particle) / Resolution: 2.9 Å

EMDB-70987: CryoEM structure of hook from Shewanella oneidensis
Method: EM (single particle) / Resolution: 4.18 Å

Source
  • shewanella oneidensis mr-1 (bacteria)
KeywordsSTRUCTURAL PROTEIN / FlaA filament / FlaB filament

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more