+検索条件
-Structure paper
タイトル | Structural basis for modulation of human Na1.3 by clinical drug and selective antagonist. |
---|---|
ジャーナル・号・ページ | Nat Commun, Vol. 13, Issue 1, Page 1286, Year 2022 |
掲載日 | 2022年3月11日 |
著者 | Xiaojing Li / Feng Xu / Hao Xu / Shuli Zhang / Yiwei Gao / Hongwei Zhang / Yanli Dong / Yanchun Zheng / Bei Yang / Jianyuan Sun / Xuejun Cai Zhang / Yan Zhao / Daohua Jiang / |
PubMed 要旨 | Voltage-gated sodium (Na) channels play fundamental roles in initiating and propagating action potentials. Na1.3 is involved in numerous physiological processes including neuronal development, ...Voltage-gated sodium (Na) channels play fundamental roles in initiating and propagating action potentials. Na1.3 is involved in numerous physiological processes including neuronal development, hormone secretion and pain perception. Here we report structures of human Na1.3/β1/β2 in complex with clinically-used drug bulleyaconitine A and selective antagonist ICA121431. Bulleyaconitine A is located around domain I-II fenestration, providing the detailed view of the site-2 neurotoxin binding site. It partially blocks ion path and expands the pore-lining helices, elucidating how the bulleyaconitine A reduces peak amplitude but improves channel open probability. In contrast, ICA121431 preferentially binds to activated domain IV voltage-sensor, consequently strengthens the Ile-Phe-Met motif binding to its receptor site, stabilizes the channel in inactivated state, revealing an allosterically inhibitory mechanism of Na channels. Our results provide structural details of distinct small-molecular modulators binding sites, elucidate molecular mechanisms of their action on Na channels and pave a way for subtype-selective therapeutic development. |
リンク | Nat Commun / PubMed:35277491 / PubMed Central |
手法 | EM (単粒子) |
解像度 | 3.3 - 3.35 Å |
構造データ | EMDB-32341, PDB-7w77: EMDB-32343, PDB-7w7f: |
化合物 | ChemComp-NAG: ChemComp-9Z9: ChemComp-6OU: ChemComp-966: ChemComp-8DE: |
由来 |
|
キーワード | MEMBRANE PROTEIN / Ion channel / Drug / Antagonist |