[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleNatural Design of a Stabilized Cross-β Fold: Structure of the FuA FapC from Pseudomonas Sp. UK4 Reveals a Critical Role for Stacking of Imperfect Repeats.
Journal, issue, pagesAdv Mater, Vol. 37, Issue 34, Page e2505503, Year 2025
Publish dateJun 11, 2025
AuthorsYanting Jiang / Samuel Peña-Díaz / Zhefei Zhang / Anders Ogechi Hostrup Daugberg / Marcos López Hernández / Janni Nielsen / Qiaojie Huang / Shenghan Qin / Morten K D Dueholm / Mingdong Dong / Jan Skov Pedersen / Qin Cao / Daniel E Otzen / Huabing Wang /
PubMed AbstractAn essential structural component of bacterial biofilms is functional amyloid (FuA), which also has great potential as an engineerable nano-biomaterial. However, experimentally based high resolution ...An essential structural component of bacterial biofilms is functional amyloid (FuA), which also has great potential as an engineerable nano-biomaterial. However, experimentally based high resolution structures of FuA that resolve individual residues are lacking. A fully experimentally based 3.2 Å resolution cryo-electron microscopy density map of the FuA protein FapC from Pseudomonas sp. UK4 is presented, which reveals a Greek key-shaped protofilament. The structure supports bioinformatic identification of conserved motifs and is broadly consistent with the AlphaFold prediction but with important modifications. Each FapC monomer consists of three imperfect repeats (IRs), with each repeat forming one cross-β layer. An array of highly conserved Asn and Gln residues with an extensive H-bonding network underpins this conserved Greek key-shape and reveals the role of heterogeneous cross-β stacking in amyloid cross-seeding. The covariation of residues in the hydrophobic core among different IRs suggests a cooperative monomer folding process during fibril elongation, while heterogeneous stacking of IRs reduces charge repulsion between layers to stabilize the monomer fold. The FapC fibrils show intrinsic catalytic activity and strain-dependent nanomechanical properties. Combined with mutagenesis data, the structure provides mechanistic insights into formation of FapC FuA from disordered monomers and a structural foundation for the design of novel biomaterials.
External linksAdv Mater / PubMed:40495649 / PubMed Central
MethodsEM (helical sym.)
Resolution3.2 Å
Structure data

EMDB-63855, PDB-9u4u:
Structure of the functional amyloid FapC from Pseudomonas sp.UK4
Method: EM (helical sym.) / Resolution: 3.2 Å

Source
  • pseudomonas sp. uk4 (bacteria)
KeywordsPROTEIN FIBRIL / Functional amyloid

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more