[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleHost ANP32A mediates the assembly of the influenza virus replicase.
Journal, issue, pagesNature, Vol. 587, Issue 7835, Page 638-643, Year 2020
Publish dateNov 18, 2020
AuthorsLoïc Carrique / Haitian Fan / Alexander P Walker / Jeremy R Keown / Jane Sharps / Ecco Staller / Wendy S Barclay / Ervin Fodor / Jonathan M Grimes /
PubMed AbstractAquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by ...Aquatic birds represent a vast reservoir from which new pandemic influenza A viruses can emerge. Influenza viruses contain a negative-sense segmented RNA genome that is transcribed and replicated by the viral heterotrimeric RNA polymerase (FluPol) in the context of viral ribonucleoprotein complexes. RNA polymerases of avian influenza A viruses (FluPolA) replicate viral RNA inefficiently in human cells because of species-specific differences in acidic nuclear phosphoprotein 32 (ANP32), a family of essential host proteins for FluPol activity. Host-adaptive mutations, particularly a glutamic-acid-to-lysine mutation at amino acid residue 627 (E627K) in the 627 domain of the PB2 subunit, enable avian FluPolA to overcome this restriction and efficiently replicate viral RNA in the presence of human ANP32 proteins. However, the molecular mechanisms of genome replication and the interplay with ANP32 proteins remain largely unknown. Here we report cryo-electron microscopy structures of influenza C virus polymerase (FluPolC) in complex with human and chicken ANP32A. In both structures, two FluPolC molecules form an asymmetric dimer bridged by the N-terminal leucine-rich repeat domain of ANP32A. The C-terminal low-complexity acidic region of ANP32A inserts between the two juxtaposed PB2 627 domains of the asymmetric FluPolA dimer, suggesting a mechanism for how the adaptive PB2(E627K) mutation enables the replication of viral RNA in mammalian hosts. We propose that this complex represents a replication platform for the viral RNA genome, in which one of the FluPol molecules acts as a replicase while the other initiates the assembly of the nascent replication product into a viral ribonucleoprotein complex.
External linksNature / PubMed:33208942 / PubMed Central
MethodsEM (single particle)
Resolution3.2 - 3.8 Å
Structure data

EMDB-10659, PDB-6xzd:
Influenza C virus polymerase complex without chicken ANP32A - Subclass 2
Method: EM (single particle) / Resolution: 3.4 Å

EMDB-10662, PDB-6xzg:
Influenza C virus polymerase in complex with chicken ANP32A - Subclass 3
Method: EM (single particle) / Resolution: 3.8 Å

EMDB-10664, PDB-6xzp:
Influenza C virus polymerase in complex with chicken ANP32A - Subclass 4
Method: EM (single particle) / Resolution: 3.3 Å

EMDB-10665, PDB-6xzq:
Influenza C virus polymerase in complex with human ANP32A - Subclass 1
Method: EM (single particle) / Resolution: 3.6 Å

EMDB-10666, PDB-6xzr:
Influenza C virus polymerase in complex with chicken ANP32A - Subclass 1
Method: EM (single particle) / Resolution: 3.3 Å

EMDB-10667, PDB-6y0c:
Influenza C virus polymerase in complex with human ANP32A - Subclass 2
Method: EM (single particle) / Resolution: 3.2 Å

Source
  • influenza c virus (c/johannesburg/1/66)
  • synthetic construct (others)
  • influenza c virus (strain c/johannesburg/1/1966)
  • gallus gallus (chicken)
  • homo sapiens (human)
  • influenza a virus (a/nt/60/1968(h3n2))
KeywordsVIRAL PROTEIN / Influenza Polymerase / ANP32 / replication / RNA-dependent RNA polymerase

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more