[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleChemically Controlled Helical Polymorphism in Protein Tubes by Selective Modulation of Supramolecular Interactions.
Journal, issue, pagesJ Am Chem Soc, Vol. 141, Issue 49, Page 19448-19457, Year 2019
Publish dateDec 11, 2019
AuthorsZhen Li / Shuyu Chen / Chendi Gao / Zhiwei Yang / Kuo-Chih Shih / Zdravko Kochovski / Guang Yang / Lu Gou / Mu-Ping Nieh / Ming Jiang / Lei Zhang / Guosong Chen /
PubMed AbstractPolymorphism has been the subject of investigation across different research disciplines. In biology, polymorphism could be interpreted in such a way that discrete biomacromolecules can adopt ...Polymorphism has been the subject of investigation across different research disciplines. In biology, polymorphism could be interpreted in such a way that discrete biomacromolecules can adopt diversiform specific conformations/packing arrangement, and this polymorph-dependent property is essential for many biochemical processes. For example, bacterial flagellar filament, composed of flagellin, switches between different supercoiled state allowing the bacteria to swim and tumble. However, in artificial supramolecular systems, it is often challenging to achieve polymorph control and prediction, and in most cases, two or more concomitant polymorphs of similar formation energies coexist. Here, we show that a tetrameric protein with properly oriented binding sites on its surface can arrange into diverse protein tubes with distinct helical parameters by adding specifically designed inducing ligands. We examined several parameters of the ligand that would influence the protein tube formation and found that the flexibility of the ligand linker and the dimerization pose of the ligand complex is critical for the successful production of the tubes and eventually influence the specific helical polymorphs of the formed tubes. A surface lattice accommodation model was further developed to rationalize the geometrical relationship between each helical tube type. Molecular simulation was used to elucidate the interactions between ligands and SBA and molecular basis for polymorphic switching of the protein tubes. Moreover, the kinetics of structural formation was studied and the ligand design was found that can affect the kinetics of the protein polymerization pathway. In short, our designed protein tubes serves as an enlightening system for understanding how a protein polymer composed of a single protein switches among different helical states.
External linksJ Am Chem Soc / PubMed:31710480
MethodsEM (helical sym.)
Resolution7.8 - 13.1 Å
Structure data

EMDB-0735:
3-start helix structure of SBA/GN3P microtube with a diameter of about 16 nm
Method: EM (helical sym.) / Resolution: 8.2 Å

EMDB-0736:
1-start helix structure of SBA/GN3GN microtube with a diameter of about 29 nm
Method: EM (helical sym.) / Resolution: 10.9 Å

EMDB-0737:
2-start helix structure of SBA/GN3GN microtube with a diameter of about 29 nm
Method: EM (helical sym.) / Resolution: 13.1 Å

EMDB-0738:
2-start helix structure of SBA/GN3GN microtube with a diameter of about 32 nm
Method: EM (helical sym.) / Resolution: 8.8 Å

EMDB-0739:
3-start helix structure of SBA/GN3GN microtube with a diameter of about 32 nm
Method: EM (helical sym.) / Resolution: 10.9 Å

EMDB-8065:
Soybean agglutinin(SBA) microtube
Method: EM (helical sym.) / Resolution: 7.8 Å

Source
  • Glycine max (soybean)

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more