[English] 日本語
Yorodumi Papers
- Database of articles cited by EMDB/PDB/SASBDB data -

+
Search query

Keywords
Structure methods
Author
Journal
IF

-
Structure paper

TitleElectron tomography of cryofixed, isometrically contracting insect flight muscle reveals novel actin-myosin interactions.
Journal, issue, pagesPLoS One, Vol. 5, Issue 9, Year 2010
Publish dateSep 9, 2010
AuthorsShenping Wu / Jun Liu / Mary C Reedy / Richard T Tregear / Hanspeter Winkler / Clara Franzini-Armstrong / Hiroyuki Sasaki / Carmen Lucaveche / Yale E Goldman / Michael K Reedy / Kenneth A Taylor /
PubMed AbstractBACKGROUND: Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of ...BACKGROUND: Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ.
METHODOLOGY: We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filament density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the "target zone", situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77°/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127° range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening.
CONCLUSION: We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very different from strong binding attachments.
External linksPLoS One / PubMed:20844746 / PubMed Central
MethodsEM (tomography) / EM (helical sym.)
Resolution35 Å
Structure data

EMDB-1561: Electron tomography of isometrically contracting insect flight muscle
PDB-2w49: ISOMETRICALLY CONTRACTING INSECT ASYNCHRONOUS FLIGHT MUSCLE
PDB-2w4a: ISOMETRICALLY CONTRACTING INSECT ASYNCHRONOUS FLIGHT MUSCLE
PDB-2w4t: ISOMETRICALLY CONTRACTING INSECT ASYNCHRONOUS FLIGHT MUSCLE
Method: EM (tomography)

PDB-2w4g:
ISOMETRICALLY CONTRACTING INSECT ASYNCHRONOUS FLIGHT MUSCLE QUICK FROZEN AFTER A QUICK STRETCH STEP
Method: ELECTRON MICROSCOPY / Resolution: 35.0 Å

Chemicals

ChemComp-CA:
Unknown entry

Source
  • Lethocerus indicus (insect)
  • gallus gallus (chicken)
  • oryctolagus cuniculus (rabbit)
  • argopecten irradians (bay scallop)
KeywordsCONTRACTILE PROTEIN / ISOMETRIC CONTRACTION / NUCLEOTIDE-BINDING / METHYLATION / ATP-BINDING / TROPOMYOSIN / MULTIVARIATE DATA ANALYSIS / FREEZING / MICROTOMY / FREEZE SUBSTITUTION / MUSCLE PROTEIN / IMAGE PROCESSING / CALMODULIN-BINDING / MOTOR PROTEIN / PHOSPHOPROTEIN / THICK FILAMENT / LIGHT CHAINS / ACTIN-BINDING / THIN FILAMENT / ACTIN / INSECT / MYOSIN / MUSCLE / TROPONIN / ACTIN- BINDING

+
About Yorodumi Papers

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi Papers

Database of articles cited by EMDB/PDB/SASBDB data

  • Database of articles cited by EMDB, PDB, and SASBDB entries
  • Using PubMed data

Related info.:EMDB / PDB / SASBDB / Yorodumi / EMN Papers / Changes in new EM Navigator and Yorodumi

Read more