[English] 日本語
Yorodumi
- PDB-8g4e: Green Fluorescence Protein imaged on a cryo-EM imaging scaffold -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8g4e
TitleGreen Fluorescence Protein imaged on a cryo-EM imaging scaffold
Components
  • RCG-10 - Cryo-EM imaging scaffold subunit B fused to DARPin
  • Superfolder Green Fluorescent Protein
KeywordsSIGNALING PROTEIN / CryoEM imaging scaffold / Cancer / GTPase
Biological speciessynthetic construct (others)
Aequorea victoria (jellyfish)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.98 Å
AuthorsCastells-Graells, R. / Sawaya, M.R. / Yeates, T.O.
Funding support United States, 2items
OrganizationGrant numberCountry
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)R01GM129854 United States
Department of Energy (DOE, United States)DE-FC02-02ER63421 United States
CitationJournal: Proc Natl Acad Sci U S A / Year: 2023
Title: Cryo-EM structure determination of small therapeutic protein targets at 3 Å-resolution using a rigid imaging scaffold.
Authors: Roger Castells-Graells / Kyle Meador / Mark A Arbing / Michael R Sawaya / Morgan Gee / Duilio Cascio / Emma Gleave / Judit É Debreczeni / Jason Breed / Karoline Leopold / Ankoor Patel / ...Authors: Roger Castells-Graells / Kyle Meador / Mark A Arbing / Michael R Sawaya / Morgan Gee / Duilio Cascio / Emma Gleave / Judit É Debreczeni / Jason Breed / Karoline Leopold / Ankoor Patel / Dushyant Jahagirdar / Bronwyn Lyons / Sriram Subramaniam / Chris Phillips / Todd O Yeates /
Abstract: Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller ...Cryoelectron microscopy (Cryo-EM) has enabled structural determination of proteins larger than about 50 kDa, including many intractable by any other method, but it has largely failed for smaller proteins. Here, we obtain structures of small proteins by binding them to a rigid molecular scaffold based on a designed protein cage, revealing atomic details at resolutions reaching 2.9 Å. We apply this system to the key cancer signaling protein KRAS (19 kDa in size), obtaining four structures of oncogenic mutational variants by cryo-EM. Importantly, a structure for the key G12C mutant bound to an inhibitor drug (AMG510) reveals significant conformational differences compared to prior data in the crystalline state. The findings highlight the promise of cryo-EM scaffolds for advancing the design of drug molecules against small therapeutic protein targets in cancer and other human diseases.
History
DepositionFeb 9, 2023Deposition site: RCSB / Processing site: RCSB
Revision 1.0Aug 9, 2023Provider: repository / Type: Initial release
Revision 1.1Sep 27, 2023Group: Data collection / Database references
Category: chem_comp_atom / chem_comp_bond ...chem_comp_atom / chem_comp_bond / citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_ASTM / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _citation_author.identifier_ORCID / _citation_author.name
Revision 1.2Nov 15, 2023Group: Data collection / Category: chem_comp_atom / chem_comp_bond / Item: _chem_comp_atom.atom_id / _chem_comp_bond.atom_id_2

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: RCG-10 - Cryo-EM imaging scaffold subunit B fused to DARPin
B: Superfolder Green Fluorescent Protein


Theoretical massNumber of molelcules
Total (without water)61,9112
Polymers61,9112
Non-polymers00
Water0
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein RCG-10 - Cryo-EM imaging scaffold subunit B fused to DARPin


Mass: 35287.246 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) synthetic construct (others) / Production host: Escherichia coli (E. coli)
#2: Protein Superfolder Green Fluorescent Protein


Mass: 26623.918 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Aequorea victoria (jellyfish) / Production host: Escherichia coli (E. coli)
Has ligand of interestN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: sfGFP displayed on a Cryo-EM imaging scaffold / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT
Molecular weightExperimental value: NO
Source (natural)Organism: synthetic construct (others)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R2/2
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: 2200 nm / Nominal defocus min: 1000 nm / Cs: 2.7 mm
Specimen holderSpecimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingElectron dose: 33 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

Software
NameVersionClassificationNB
phenix.real_space_refine1.20_4459refinement
PHENIX1.20_4459refinement
EM software
IDNameVersionCategory
7Cootmodel fitting
9PHENIX1.20_4459model refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
SymmetryPoint symmetry: C1 (asymmetric)
3D reconstructionResolution: 2.98 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 1221977 / Symmetry type: POINT
Atomic model buildingProtocol: AB INITIO MODEL / Space: REAL
RefinementCross valid method: NONE
Stereochemistry target values: GeoStd + Monomer Library + CDL v1.2
Displacement parametersBiso mean: 51.16 Å2
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00223158
ELECTRON MICROSCOPYf_angle_d0.45054278
ELECTRON MICROSCOPYf_chiral_restr0.0399479
ELECTRON MICROSCOPYf_plane_restr0.0035562
ELECTRON MICROSCOPYf_dihedral_angle_d5.1385433

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more