[English] 日本語
Yorodumi
- EMDB-27743: Cryo-EM structure of RIG-I bound to the end of p3SLR30 (+AMPPNP) -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-27743
TitleCryo-EM structure of RIG-I bound to the end of p3SLR30 (+AMPPNP)
Map dataCryo-EM structure of protein-RNA complex 7
Sample
  • Complex: Complex of RIG-I with p3SLR30 with AMPPNP addition
    • RNA: p3SLR30
  • Protein or peptide: Antiviral innate immune response receptor RIG-I
  • Ligand: ZINC ION
  • Ligand: GUANOSINE-5'-TRIPHOSPHATEGuanosine triphosphate
Function / homology
Function and homology information


regulation of type III interferon production / RIG-I signaling pathway / positive regulation of myeloid dendritic cell cytokine production / OAS antiviral response / detection of virus / NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 / positive regulation of response to cytokine stimulus / positive regulation of granulocyte macrophage colony-stimulating factor production / pattern recognition receptor activity / TRAF6 mediated IRF7 activation ...regulation of type III interferon production / RIG-I signaling pathway / positive regulation of myeloid dendritic cell cytokine production / OAS antiviral response / detection of virus / NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 / positive regulation of response to cytokine stimulus / positive regulation of granulocyte macrophage colony-stimulating factor production / pattern recognition receptor activity / TRAF6 mediated IRF7 activation / cellular response to exogenous dsRNA / response to exogenous dsRNA / cytoplasmic pattern recognition receptor signaling pathway / positive regulation of interferon-alpha production / antiviral innate immune response / TRAF6 mediated NF-kB activation / bicellular tight junction / regulation of cell migration / positive regulation of defense response to virus by host / positive regulation of interferon-beta production / Negative regulators of DDX58/IFIH1 signaling / positive regulation of interleukin-8 production / response to virus / DDX58/IFIH1-mediated induction of interferon-alpha/beta / ISG15 antiviral mechanism / ruffle membrane / positive regulation of interleukin-6 production / SARS-CoV-1 activates/modulates innate immune responses / positive regulation of DNA-binding transcription factor activity / Ovarian tumor domain proteases / actin cytoskeleton / positive regulation of tumor necrosis factor production / double-stranded RNA binding / gene expression / TRAF3-dependent IRF activation pathway / double-stranded DNA binding / defense response to virus / RNA helicase activity / single-stranded RNA binding / Ub-specific processing proteases / RNA helicase / ribonucleoprotein complex / innate immune response / ubiquitin protein ligase binding / positive regulation of gene expression / GTP binding / SARS-CoV-2 activates/modulates innate and adaptive immune responses / ATP hydrolysis activity / positive regulation of transcription by RNA polymerase II / zinc ion binding / ATP binding / identical protein binding / cytosol / cytoplasm
Similarity search - Function
RIG-I, CARD domain repeat 2 / RIG-I-like receptor, C-terminal / RIG-I receptor C-terminal domain / RIG-I-like receptor, C-terminal regulatory domain / RIG-I-like receptor, C-terminal domain superfamily / C-terminal domain of RIG-I / RIG-I-like receptor (RLR) C-terminal regulatory (CTR) domain profile. / Caspase recruitment domain / Caspase recruitment domain / Death-like domain superfamily ...RIG-I, CARD domain repeat 2 / RIG-I-like receptor, C-terminal / RIG-I receptor C-terminal domain / RIG-I-like receptor, C-terminal regulatory domain / RIG-I-like receptor, C-terminal domain superfamily / C-terminal domain of RIG-I / RIG-I-like receptor (RLR) C-terminal regulatory (CTR) domain profile. / Caspase recruitment domain / Caspase recruitment domain / Death-like domain superfamily / DEAD/DEAH box helicase / DEAD/DEAH box helicase domain / Helicase conserved C-terminal domain / helicase superfamily c-terminal domain / Superfamilies 1 and 2 helicase C-terminal domain profile. / Superfamilies 1 and 2 helicase ATP-binding type-1 domain profile. / DEAD-like helicases superfamily / Helicase, C-terminal / Helicase superfamily 1/2, ATP-binding domain / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
Antiviral innate immune response receptor RIG-I
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.3 Å
AuthorsWang W / Pyle AM
Funding support United States, 2 items
OrganizationGrant numberCountry
Howard Hughes Medical Institute (HHMI) United States
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)1R01AI131518 United States
CitationJournal: Mol Cell / Year: 2022
Title: The RIG-I receptor adopts two different conformations for distinguishing host from viral RNA ligands.
Authors: Wenshuai Wang / Anna Marie Pyle /
Abstract: RIG-I is an essential innate immune receptor for detecting and responding to infection by RNA viruses. RIG-I specifically recognizes the unique molecular features of viral RNA molecules and ...RIG-I is an essential innate immune receptor for detecting and responding to infection by RNA viruses. RIG-I specifically recognizes the unique molecular features of viral RNA molecules and selectively distinguishes them from closely related RNAs abundant in host cells. The physical basis for this exquisite selectivity is revealed through a series of high-resolution cryo-EM structures of RIG-I in complex with host and viral RNA ligands. These studies demonstrate that RIG-I actively samples double-stranded RNAs in the cytoplasm and distinguishes them by adopting two different types of protein folds. Upon binding viral RNA, RIG-I adopts a high-affinity conformation that is conducive to signaling, while host RNA induces an autoinhibited conformation that stimulates RNA release. By coupling protein folding with RNA binding selectivity, RIG-I distinguishes RNA molecules that differ by as little as one phosphate group, thereby explaining the molecular basis for selective antiviral sensing and the induction of autoimmunity upon RIG-I dysregulation.
History
DepositionJul 29, 2022-
Header (metadata) releaseNov 2, 2022-
Map releaseNov 2, 2022-
UpdateNov 16, 2022-
Current statusNov 16, 2022Processing site: RCSB / Status: Released

-
Structure visualization

Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_27743.map.gz / Format: CCP4 / Size: 27 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
AnnotationCryo-EM structure of protein-RNA complex 7
Voxel sizeX=Y=Z: 1.068 Å
Density
Contour LevelBy AUTHOR: 0.04
Minimum - Maximum-0.21807505 - 0.32715
Average (Standard dev.)-3.0456838e-05 (±0.0068549104)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions192192192
Spacing192192192
CellA=B=C: 205.056 Å
α=β=γ: 90.0 °

-
Supplemental data

-
Mask #1

Fileemd_27743_msk_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: Half Map 1

Fileemd_27743_half_map_1.map
AnnotationHalf Map 1
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: Half Map 2

Fileemd_27743_half_map_2.map
AnnotationHalf Map 2
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Sample components

-
Entire : Complex of RIG-I with p3SLR30 with AMPPNP addition

EntireName: Complex of RIG-I with p3SLR30 with AMPPNP addition
Components
  • Complex: Complex of RIG-I with p3SLR30 with AMPPNP addition
    • RNA: p3SLR30
  • Protein or peptide: Antiviral innate immune response receptor RIG-I
  • Ligand: ZINC ION
  • Ligand: GUANOSINE-5'-TRIPHOSPHATEGuanosine triphosphate

-
Supramolecule #1: Complex of RIG-I with p3SLR30 with AMPPNP addition

SupramoleculeName: Complex of RIG-I with p3SLR30 with AMPPNP addition / type: complex / Chimera: Yes / ID: 1 / Parent: 0 / Macromolecule list: #2
Source (natural)Organism: Homo sapiens (human)
Recombinant expressionOrganism: Escherichia coli (E. coli)

-
Macromolecule #1: Antiviral innate immune response receptor RIG-I

MacromoleculeName: Antiviral innate immune response receptor RIG-I / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO / EC number: RNA helicase
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 106.740555 KDa
Recombinant expressionOrganism: Escherichia coli (E. coli)
SequenceString: MTTEQRRSLQ AFQDYIRKTL DPTYILSYMA PWFREEEVQY IQAEKNNKGP MEAATLFLKF LLELQEEGWF RGFLDALDHA GYSGLYEAI ESWDFKKIEK LEEYRLLLKR LQPEFKTRII PTDIISDLSE CLINQECEEI LQICSTKGMM AGAEKLVECL L RSDKENWP ...String:
MTTEQRRSLQ AFQDYIRKTL DPTYILSYMA PWFREEEVQY IQAEKNNKGP MEAATLFLKF LLELQEEGWF RGFLDALDHA GYSGLYEAI ESWDFKKIEK LEEYRLLLKR LQPEFKTRII PTDIISDLSE CLINQECEEI LQICSTKGMM AGAEKLVECL L RSDKENWP KTLKLALEKE RNKFSELWIV EKGIKDVETE DLEDKMETSD IQIFYQEDPE CQNLSENSCP PSEVSDTNLY SP FKPRNYQ LELALPAMKG KNTIICAPTG CGKTFVSLLI CEHHLKKFPQ GQKGKVVFFA NQIPVYEQQK SVFSKYFERH GYR VTGISG ATAENVPVEQ IVENNDIIIL TPQILVNNLK KGTIPSLSIF TLMIFDECHN TSKQHPYNMI MFNYLDQKLG GSSG PLPQV IGLTASVGVG DAKNTDEALD YICKLCASLD ASVIATVKHN LEELEQVVYK PQKFFRKVES RISDKFKYII AQLMR DTES LAKRICKDLE NLSQIQNREF GTQKYEQWIV TVQKACMVFQ MPDKDEESRI CKALFLYTSH LRKYNDALII SEHARM KDA LDYLKDFFSN VRAAGFDEIE QDLTQRFEEK LQELESVSRD PSNENPKLED LCFILQEEYH LNPETITILF VKTRALV DA LKNWIEGNPK LSFLKPGILT GRGKTNQNTG MTLPAQKCIL DAFKASGDHN ILIATSVADE GIDIAQCNLV ILYEYVGN V IKMIQTRGRG RARGSKCFLL TSNAGVIEKE QINMYKEKMM NDSILRLQTW DEAVFREKIL HIQTHEKFIR DSQEKPKPV PDKENKKLLC RKCKALACYT ADVRVIEECH YTVLGDAFKE CFVSRPHPKP KQFSSFEKRA KIFCARQNCS HDWGIHVKYK TFEIPVIKI ESFVVEDIAT GVQTLYSKWK DFHFEKIPFD PAEMSK

-
Macromolecule #2: p3SLR30

MacromoleculeName: p3SLR30 / type: rna / ID: 2 / Number of copies: 1
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 19.51358 KDa
SequenceString:
GAUCGAUCGA UCGAUCGAUC CAUCGGCUUC GGCCGAUCGA UGCCGAUCGA UCGAUCGAUC C

-
Macromolecule #3: ZINC ION

MacromoleculeName: ZINC ION / type: ligand / ID: 3 / Number of copies: 1 / Formula: ZN
Molecular weightTheoretical: 65.409 Da

-
Macromolecule #4: GUANOSINE-5'-TRIPHOSPHATE

MacromoleculeName: GUANOSINE-5'-TRIPHOSPHATE / type: ligand / ID: 4 / Number of copies: 1 / Formula: GTP
Molecular weightTheoretical: 523.18 Da
Chemical component information

ChemComp-GTP:
GUANOSINE-5'-TRIPHOSPHATE / GTP, energy-carrying molecule*YM / Guanosine triphosphate

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 7.4
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: 3.0 µm / Nominal defocus min: 1.2 µm
Image recordingFilm or detector model: GATAN K3 (6k x 4k) / Average electron dose: 60.0 e/Å2
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

Initial angle assignmentType: MAXIMUM LIKELIHOOD
Final angle assignmentType: MAXIMUM LIKELIHOOD
Final reconstructionApplied symmetry - Point group: C1 (asymmetric) / Resolution.type: BY AUTHOR / Resolution: 3.3 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 692833
FSC plot (resolution estimation)

-
Atomic model buiding 1

Initial modelPDB ID:
RefinementOverall B value: 157.95
Output model

PDB-8dvr:
Cryo-EM structure of RIG-I bound to the end of p3SLR30 (+AMPPNP)

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more