[English] 日本語
Yorodumi
- PDB-9od2: Cryo-EM structure of modified Zika virus E protein dimer complexe... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9od2
TitleCryo-EM structure of modified Zika virus E protein dimer complexed with a neutralizing antibody SMZAb2 Fab
Components
  • Envelope protein E
  • SMZAb2 Heavy chain
  • SMZAb2 Light chain
KeywordsVIRAL PROTEIN/IMMUNE SYSTEM / neutralizing antibody / VIRAL PROTEIN / VIRAL PROTEIN-Immune System complex
Function / homology
Function and homology information


flavivirin / symbiont-mediated suppression of host JAK-STAT cascade via inhibition of host TYK2 activity / symbiont-mediated suppression of host JAK-STAT cascade via inhibition of STAT2 activity / symbiont-mediated suppression of host JAK-STAT cascade via inhibition of STAT1 activity / negative regulation of innate immune response / viral capsid / double-stranded RNA binding / nucleoside-triphosphate phosphatase / 4 iron, 4 sulfur cluster binding / clathrin-dependent endocytosis of virus by host cell ...flavivirin / symbiont-mediated suppression of host JAK-STAT cascade via inhibition of host TYK2 activity / symbiont-mediated suppression of host JAK-STAT cascade via inhibition of STAT2 activity / symbiont-mediated suppression of host JAK-STAT cascade via inhibition of STAT1 activity / negative regulation of innate immune response / viral capsid / double-stranded RNA binding / nucleoside-triphosphate phosphatase / 4 iron, 4 sulfur cluster binding / clathrin-dependent endocytosis of virus by host cell / mRNA (guanine-N7)-methyltransferase / methyltransferase cap1 / molecular adaptor activity / methyltransferase cap1 activity / mRNA 5'-cap (guanine-N7-)-methyltransferase activity / RNA helicase activity / protein dimerization activity / host cell perinuclear region of cytoplasm / host cell endoplasmic reticulum membrane / RNA helicase / symbiont-mediated suppression of host type I interferon-mediated signaling pathway / symbiont-mediated activation of host autophagy / serine-type endopeptidase activity / RNA-directed RNA polymerase / viral RNA genome replication / RNA-directed RNA polymerase activity / fusion of virus membrane with host endosome membrane / viral envelope / centrosome / lipid binding / GTP binding / virion attachment to host cell / host cell nucleus / virion membrane / structural molecule activity / ATP hydrolysis activity / proteolysis / extracellular region / ATP binding / metal ion binding / membrane
Similarity search - Function
Flavivirus capsid protein C superfamily / Flavivirus non-structural protein NS2B / Genome polyprotein, Flavivirus / : / Flavivirus non-structural protein NS4A / Flavivirus non-structural protein NS2B / Flavivirus non-structural protein NS4B / mRNA cap 0/1 methyltransferase / Flavivirus non-structural protein NS4B / Flavivirus non-structural protein NS4A ...Flavivirus capsid protein C superfamily / Flavivirus non-structural protein NS2B / Genome polyprotein, Flavivirus / : / Flavivirus non-structural protein NS4A / Flavivirus non-structural protein NS2B / Flavivirus non-structural protein NS4B / mRNA cap 0/1 methyltransferase / Flavivirus non-structural protein NS4B / Flavivirus non-structural protein NS4A / Flavivirus NS2B domain profile. / mRNA cap 0 and cap 1 methyltransferase (EC 2.1.1.56 and EC 2.1.1.57) domain profile. / Flavivirus non-structural protein NS2A / Flavivirus non-structural protein NS2A / Flavivirus NS3, petidase S7 / Peptidase S7, Flavivirus NS3 serine protease / Flavivirus NS3 protease (NS3pro) domain profile. / RNA-directed RNA polymerase, thumb domain, Flavivirus / Flavivirus RNA-directed RNA polymerase, thumb domain / RNA-directed RNA polymerase, flavivirus / Flavivirus RNA-directed RNA polymerase, fingers and palm domains / Flavivirus capsid protein C / Flavivirus capsid protein C / Flavivirus non-structural Protein NS1 / Flavivirus non-structural protein NS1 / Envelope glycoprotein M superfamily, flavivirus / Envelope glycoprotein M, flavivirus / Flavivirus polyprotein propeptide superfamily / Flavivirus envelope glycoprotein M / Flavivirus polyprotein propeptide / Flavivirus polyprotein propeptide / Flavivirus envelope glycoprotein E, Stem/Anchor domain superfamily / Flavivirus envelope glycoprotein E, stem/anchor domain / : / Flavivirus NS3 helicase, C-terminal helical domain / Flavivirus envelope glycoprotein E, Stem/Anchor domain / Flaviviral glycoprotein E, central domain, subdomain 1 / Flaviviral glycoprotein E, central domain, subdomain 2 / Flavivirus glycoprotein E, immunoglobulin-like domain / Flavivirus glycoprotein, immunoglobulin-like domain / Flavivirus glycoprotein central and dimerisation domain / Flavivirus glycoprotein, central and dimerisation domains / Ribosomal RNA methyltransferase, FtsJ domain / FtsJ-like methyltransferase / Flavivirus/Alphavirus glycoprotein, immunoglobulin-like domain superfamily / Flavivirus glycoprotein, central and dimerisation domain superfamily / Flaviviral glycoprotein E, dimerisation domain / DEAD box, Flavivirus / Flavivirus DEAD domain / helicase superfamily c-terminal domain / Immunoglobulin E-set / Superfamilies 1 and 2 helicase C-terminal domain profile. / Superfamilies 1 and 2 helicase ATP-binding type-1 domain profile. / DEAD-like helicases superfamily / Helicase, C-terminal / Helicase superfamily 1/2, ATP-binding domain / RNA-directed RNA polymerase, catalytic domain / RdRp of positive ssRNA viruses catalytic domain profile. / S-adenosyl-L-methionine-dependent methyltransferase superfamily / Peptidase S1, PA clan / DNA/RNA polymerase superfamily / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
Biological speciesHomo sapiens (human)
Zika virus
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4.09 Å
AuthorsGalkin, A. / Pozharski, E.
Funding support United States, 1items
OrganizationGrant numberCountry
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID) United States
CitationJournal: Nat Commun / Year: 2025
Title: Rational design of flavivirus E protein vaccine optimizes immunogenicity and mitigates antibody dependent enhancement risk.
Authors: Yimeng Wang / Andrey Galkin / Xiaoran Shang / Alexander Marin / Shaohua Jin / Ting-Juan Ye / Shridhar Bale / Chi-I Chiang / Ananda Chowdhury / Agnes L Chenine / Ashley Turonis / Jack ...Authors: Yimeng Wang / Andrey Galkin / Xiaoran Shang / Alexander Marin / Shaohua Jin / Ting-Juan Ye / Shridhar Bale / Chi-I Chiang / Ananda Chowdhury / Agnes L Chenine / Ashley Turonis / Jack Greenhouse / Rebecca Stone / Jaclyn Wear / Swagata Kar / Hanne Andersen / Yan-Jang S Huang / Dana L Vanlandingham / Stephen Higgs / Rena G Lapidus / Thomas Fuerst / David J Weber / Richard T Wyatt / Christel Iffland / Theodore C Pierson / Alexander K Andrianov / Edwin Pozharski / Yuxing Li /
Abstract: Flaviviruses are a family of related viruses that cause substantial global morbidity and mortality. Vaccination against one flavivirus can sometimes exacerbate disease caused by related viruses ...Flaviviruses are a family of related viruses that cause substantial global morbidity and mortality. Vaccination against one flavivirus can sometimes exacerbate disease caused by related viruses through antibody-dependent enhancement (ADE) or interfere with the efficacy of subsequent vaccines. To address this challenge, we develop a vaccine strategy by introducing G5C/G102C mutations into the flavivirus envelope (E) glycoprotein. These mutations promote E dimerization through the formation of an inter-chain disulfide bond that conceals the immunodominant and ADE-prone fusion loop epitope (FLE). We validate this design on E proteins from multiple flaviviruses through biochemical, antigenic, and structural analyses. The resulting vaccine candidate, CC_FLE sE, derived from the Zika virus (ZIKV) and formulated with an advanced supramolecular adjuvant, provides significant protection in female mice challenged with ZIKV and prevents ADE caused by a related flavivirus, Dengue virus. In genetically modified mice expressing diverse human immunoglobulin loci, ZIKV CC_FLE sE induces robust neutralizing antibody responses targeting key ZIKV E protein epitopes, including the E-dimer-dependent epitope (EDE), indicating that ZIKV CC_FLE sE can elicit protective antibody responses within the human naïve B cell repertoire. Therefore, CC_FLE sE represents a promising strategy for developing flavivirus vaccines that minimize ADE risk while maintaining high protective efficacy.
History
DepositionApr 25, 2025Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jan 21, 2026Provider: repository / Type: Initial release
Revision 1.0Jan 21, 2026Data content type: EM metadata / Data content type: EM metadata / Provider: repository / Type: Initial release
Revision 1.0Jan 21, 2026Data content type: FSC / Data content type: FSC / Provider: repository / Type: Initial release
Revision 1.0Jan 21, 2026Data content type: Half map / Part number: 1 / Data content type: Half map / Provider: repository / Type: Initial release
Revision 1.0Jan 21, 2026Data content type: Half map / Part number: 2 / Data content type: Half map / Provider: repository / Type: Initial release
Revision 1.0Jan 21, 2026Data content type: Image / Data content type: Image / Provider: repository / Type: Initial release
Revision 1.0Jan 21, 2026Data content type: Primary map / Data content type: Primary map / Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
C: SMZAb2 Heavy chain
D: SMZAb2 Light chain
H: SMZAb2 Heavy chain
L: SMZAb2 Light chain
A: Envelope protein E
B: Envelope protein E


Theoretical massNumber of molelcules
Total (without water)144,9066
Polymers144,9066
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

#1: Protein SMZAb2 Heavy chain


Mass: 13566.996 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#2: Antibody SMZAb2 Light chain


Mass: 11588.911 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#3: Protein Envelope protein E


Mass: 47297.340 Da / Num. of mol.: 2 / Mutation: G5C, G102C
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Zika virus / Production host: Drosophila melanogaster (fruit fly) / References: UniProt: A0A024B7W1
Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Zika virus E protein dimer complex with a neutralizing antibody SMZAB2 Fab
Type: COMPLEX / Entity ID: all / Source: MULTIPLE SOURCES
Source (natural)Organism: Zika virus
Source (recombinant)Organism: Drosophila (fruit flies)
Buffer solutionpH: 7.4
SpecimenConc.: 0.75 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: GOLD / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R2/2
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 285 K

-
Electron microscopy imaging

MicroscopyModel: TFS GLACIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 45000 X / Calibrated magnification: 56200 X / Nominal defocus max: 2500 nm / Nominal defocus min: 700 nm / Calibrated defocus min: 500 nm / Calibrated defocus max: 2700 nm / Cs: 2.7 mm / C2 aperture diameter: 50 µm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Residual tilt: 0.5 mradians
Image recordingAverage exposure time: 2.5 sec. / Electron dose: 52 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) / Num. of grids imaged: 2 / Num. of real images: 3633
Image scansWidth: 5760 / Height: 4092

-
Processing

EM software
IDNameVersionCategory
1cryoSPARCparticle selection
2SerialEM4.0.3image acquisition
4cryoSPARCCTF correction
12cryoSPARCclassification
13cryoSPARC3D reconstruction
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 196387
SymmetryPoint symmetry: C2 (2 fold cyclic)
3D reconstructionResolution: 4.09 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 141948 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more