[English] 日本語
Yorodumi
- PDB-9iv9: Cryo-EM structure of a truncated Nipah Virus L Protein bound by P... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9iv9
TitleCryo-EM structure of a truncated Nipah Virus L Protein bound by Phosphoprotein Tetramer
Components
  • Phosphoprotein
  • RNA-directed RNA polymerase L
KeywordsVIRAL PROTEIN / RNA polymerase
Function / homology
Function and homology information


negative stranded viral RNA transcription / NNS virus cap methyltransferase / GDP polyribonucleotidyltransferase / negative stranded viral RNA replication / Hydrolases; Acting on acid anhydrides; In phosphorus-containing anhydrides / virion component / molecular adaptor activity / mRNA 5'-cap (guanine-N7-)-methyltransferase activity / host cell cytoplasm / symbiont-mediated suppression of host innate immune response ...negative stranded viral RNA transcription / NNS virus cap methyltransferase / GDP polyribonucleotidyltransferase / negative stranded viral RNA replication / Hydrolases; Acting on acid anhydrides; In phosphorus-containing anhydrides / virion component / molecular adaptor activity / mRNA 5'-cap (guanine-N7-)-methyltransferase activity / host cell cytoplasm / symbiont-mediated suppression of host innate immune response / RNA-directed RNA polymerase / RNA-directed RNA polymerase activity / GTPase activity / ATP binding
Similarity search - Function
Phosphoprotein P region PNT disordered / Phosphoprotein P region PNT disordered / Paramyxovirus structural protein P/V, N-terminal domain / Paramyxovirus structural protein V/P N-terminus / Phosphoprotein P soyouz module / N-terminal region of Paramyxovirinae phosphoprotein (P) / RNA-directed RNA polymerase, paramyxovirus / P/V phosphoprotein, paramyxoviral / Paramyxovirus P/V phosphoprotein C-terminal / Mononegavirales RNA-directed RNA polymerase catalytic domain ...Phosphoprotein P region PNT disordered / Phosphoprotein P region PNT disordered / Paramyxovirus structural protein P/V, N-terminal domain / Paramyxovirus structural protein V/P N-terminus / Phosphoprotein P soyouz module / N-terminal region of Paramyxovirinae phosphoprotein (P) / RNA-directed RNA polymerase, paramyxovirus / P/V phosphoprotein, paramyxoviral / Paramyxovirus P/V phosphoprotein C-terminal / Mononegavirales RNA-directed RNA polymerase catalytic domain / Mononegavirus L protein 2-O-ribose methyltransferase / Mononegavirales mRNA-capping domain V / RNA-directed RNA polymerase L, C-terminal / Mononegavirales RNA dependent RNA polymerase / Mononegavirales mRNA-capping region V / RdRp of negative ssRNA viruses with non-segmented genomes catalytic domain profile. / Mononegavirus L protein 2'-O-ribose methyltransferase domain profile. / Ribosomal RNA methyltransferase, FtsJ domain / FtsJ-like methyltransferase
Similarity search - Domain/homology
RNA-directed RNA polymerase L / Phosphoprotein
Similarity search - Component
Biological speciesHenipavirus nipahense
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.31 Å
AuthorsXue, L. / Chang, T. / Gui, J. / Li, Z. / Zhao, H. / Zou, B. / Li, M. / He, J. / Chen, X. / Xiong, X.
Funding support China, 1items
OrganizationGrant numberCountry
National Natural Science Foundation of China (NSFC)82341085 to X.X. China
CitationJournal: Protein Cell / Year: 2025
Title: Cryo-EM structures of Nipah virus polymerase complex reveal highly varied interactions between L and P proteins among paramyxoviruses.
Authors: Lu Xue / Tiancai Chang / Jiacheng Gui / Zimu Li / Heyu Zhao / Bingqian Zou / Junnan Lu / Mei Li / Xin Wen / Shenghua Gao / Peng Zhan / Lijun Rong / Liqiang Feng / Peng Gong / Jun He / Xinwen ...Authors: Lu Xue / Tiancai Chang / Jiacheng Gui / Zimu Li / Heyu Zhao / Bingqian Zou / Junnan Lu / Mei Li / Xin Wen / Shenghua Gao / Peng Zhan / Lijun Rong / Liqiang Feng / Peng Gong / Jun He / Xinwen Chen / Xiaoli Xiong /
Abstract: Nipah virus (NiV) and related viruses form a distinct henipavirus genus within the Paramyxoviridae family. NiV continues to spillover into the humans causing deadly outbreaks with increasing human- ...Nipah virus (NiV) and related viruses form a distinct henipavirus genus within the Paramyxoviridae family. NiV continues to spillover into the humans causing deadly outbreaks with increasing human-bat interaction. NiV encodes the large protein (L) and phosphoprotein (P) to form the viral RNA polymerase machinery. Their sequences show limited homologies to those of non-henipavirus paramyxoviruses. We report two cryo-electron microscopy (cryo-EM) structures of the Nipah virus (NiV) polymerase L-P complex, expressed and purified in either its full-length or truncated form. The structures resolve the RNA-dependent RNA polymerase (RdRp) and polyribonucleotidyl transferase (PRNTase) domains of the L protein, as well as a tetrameric P protein bundle bound to the L-RdRp. L-protein C-terminal regions are unresolved, indicating flexibility. Two PRNTase domain zinc-binding sites, conserved in most Mononegavirales, are confirmed essential for NiV polymerase activity. The structures further reveal anchoring of the P protein bundle and P protein X domain (XD) linkers on L, via an interaction pattern distinct among Paramyxoviridae. These interactions facilitate binding of a P protein XD linker in the nucleotide entry channel and distinct positioning of other XD linkers. We show that the disruption of the L-P interactions reduces NiV polymerase activity. The reported structures should facilitate rational antiviral-drug discovery and provide a guide for the functional study of NiV polymerase.
History
DepositionJul 23, 2024Deposition site: PDBJ / Processing site: PDBJ
Revision 1.0May 21, 2025Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: RNA-directed RNA polymerase L
B: Phosphoprotein
C: Phosphoprotein
D: Phosphoprotein
E: Phosphoprotein
hetero molecules


Theoretical massNumber of molelcules
Total (without water)479,9597
Polymers479,8285
Non-polymers1312
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

#1: Protein RNA-directed RNA polymerase L / Protein L / Large structural protein / Replicase / Transcriptase


Mass: 166266.891 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Henipavirus nipahense / Production host: Spodoptera frugiperda ascovirus 1c
References: UniProt: Q997F0, RNA-directed RNA polymerase, Hydrolases; Acting on acid anhydrides; In phosphorus-containing anhydrides, GDP polyribonucleotidyltransferase, NNS virus cap methyltransferase
#2: Protein
Phosphoprotein / Protein P


Mass: 78390.320 Da / Num. of mol.: 4
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Henipavirus nipahense / Gene: P/V/C / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: Q9IK91
#3: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Zn / Feature type: SUBJECT OF INVESTIGATION
Has ligand of interestY
Has protein modificationN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Cryo-EM structure of a truncated Nipah Virus L Protein bound by Phosphoprotein Tetramer
Type: COMPLEX / Entity ID: #1-#2 / Source: RECOMBINANT
Source (natural)Organism: Henipavirus nipahense
Source (recombinant)Organism: Spodoptera frugiperda (fall armyworm)
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: TFS KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2400 nm / Nominal defocus min: 600 nm
Image recordingElectron dose: 50 e/Å2 / Film or detector model: TFS FALCON 4i (4k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 2.31 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 674945 / Symmetry type: POINT
RefinementHighest resolution: 2.31 Å
Stereochemistry target values: REAL-SPACE (WEIGHTED MAP SUM AT ATOM CENTERS)
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00413278
ELECTRON MICROSCOPYf_angle_d0.78217920
ELECTRON MICROSCOPYf_dihedral_angle_d4.831754
ELECTRON MICROSCOPYf_chiral_restr0.0512049
ELECTRON MICROSCOPYf_plane_restr0.0062275

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more