+
データを開く
-
基本情報
登録情報 | データベース: PDB / ID: 9it0 | ||||||
---|---|---|---|---|---|---|---|
タイトル | Liganded-state E.coli PatZ | ||||||
![]() | Protein acetyltransferase | ||||||
![]() | TRANSFERASE / Acetyltransferase | ||||||
機能・相同性 | ![]() acyltransferase activity, transferring groups other than amino-acyl groups / ATP binding / metal ion binding 類似検索 - 分子機能 | ||||||
生物種 | ![]() ![]() | ||||||
手法 | 電子顕微鏡法 / 単粒子再構成法 / クライオ電子顕微鏡法 / 解像度: 1.99 Å | ||||||
![]() | Park, J.B. / Roh, S.H. | ||||||
資金援助 | ![]()
| ||||||
![]() | ![]() タイトル: Ligand bound acetyltransferase 著者: Park, J.B. / Roh, S.H. #1: ジャーナル: mBio / 年: 2018 タイトル: Identification of Novel Protein Lysine Acetyltransferases in Escherichia coli. 著者: David G Christensen / Jesse G Meyer / Jackson T Baumgartner / Alexandria K D'Souza / William C Nelson / Samuel H Payne / Misty L Kuhn / Birgit Schilling / Alan J Wolfe / ![]() 要旨: Posttranslational modifications, such as ε-lysine acetylation, regulate protein function. ε-lysine acetylation can occur either nonenzymatically or enzymatically. The nonenzymatic mechanism uses ...Posttranslational modifications, such as ε-lysine acetylation, regulate protein function. ε-lysine acetylation can occur either nonenzymatically or enzymatically. The nonenzymatic mechanism uses acetyl phosphate (AcP) or acetyl coenzyme A (AcCoA) as acetyl donor to modify an ε-lysine residue of a protein. The enzymatic mechanism uses ε-lysine acetyltransferases (KATs) to specifically transfer an acetyl group from AcCoA to ε-lysine residues on proteins. To date, only one KAT (YfiQ, also known as Pka and PatZ) has been identified in Here, we demonstrate the existence of 4 additional KATs: RimI, YiaC, YjaB, and PhnO. In a genetic background devoid of all known acetylation mechanisms (most notably AcP and YfiQ) and one deacetylase (CobB), overexpression of these putative KATs elicited unique patterns of protein acetylation. We mutated key active site residues and found that most of them eliminated enzymatic acetylation activity. We used mass spectrometry to identify and quantify the specificity of YfiQ and the four novel KATs. Surprisingly, our analysis revealed a high degree of substrate specificity. The overlap between KAT-dependent and AcP-dependent acetylation was extremely limited, supporting the hypothesis that these two acetylation mechanisms play distinct roles in the posttranslational modification of bacterial proteins. We further showed that these novel KATs are conserved across broad swaths of bacterial phylogeny. Finally, we determined that one of the novel KATs (YiaC) and the known KAT (YfiQ) can negatively regulate bacterial migration. Together, these results emphasize distinct and specific nonenzymatic and enzymatic protein acetylation mechanisms present in bacteria.ε-Lysine acetylation is one of the most abundant and important posttranslational modifications across all domains of life. One of the best-studied effects of acetylation occurs in eukaryotes, where acetylation of histone tails activates gene transcription. Although bacteria do not have true histones, ε-lysine acetylation is prevalent; however, the role of these modifications is mostly unknown. We constructed an strain that lacked both known acetylation mechanisms to identify four new ε-lysine acetyltransferases (RimI, YiaC, YjaB, and PhnO). We used mass spectrometry to determine the substrate specificity of these acetyltransferases. Structural analysis of selected substrate proteins revealed site-specific preferences for enzymatic acetylation that had little overlap with the preferences of the previously reported acetyl-phosphate nonenzymatic acetylation mechanism. Finally, YiaC and YfiQ appear to regulate flagellum-based motility, a phenotype critical for pathogenesis of many organisms. These acetyltransferases are highly conserved and reveal deeper and more complex roles for bacterial posttranslational modification. | ||||||
履歴 |
|
-
構造の表示
構造ビューア | 分子: ![]() ![]() |
---|
-
ダウンロードとリンク
-
ダウンロード
PDBx/mmCIF形式 | ![]() | 1.2 MB | 表示 | ![]() |
---|---|---|---|---|
PDB形式 | ![]() | 1 MB | 表示 | ![]() |
PDBx/mmJSON形式 | ![]() | ツリー表示 | ![]() | |
その他 | ![]() |
-検証レポート
アーカイブディレクトリ | ![]() ![]() | HTTPS FTP |
---|
-関連構造データ
関連構造データ | ![]() 60853MC M: このデータのモデリングに利用したマップデータ C: 同じ文献を引用 ( |
---|---|
類似構造データ | 類似検索 - 機能・相同性 ![]() |
-
リンク
-
集合体
登録構造単位 | ![]()
|
---|---|
1 |
|
-
要素
#1: タンパク質 | 分子量: 98099.375 Da / 分子数: 4 / 由来タイプ: 組換発現 由来: (組換発現) ![]() ![]() 遺伝子: pat, yfiQ, ACU57_10170, BGM66_000644, BJI68_02105, C0P57_000002, CG831_000342, CIG67_15390, CTR35_002231, CV83915_03530, DTL43_02095, EIZ93_15170, FOI11_000020, FOI11_20030, FWK02_03775, ...遺伝子: pat, yfiQ, ACU57_10170, BGM66_000644, BJI68_02105, C0P57_000002, CG831_000342, CIG67_15390, CTR35_002231, CV83915_03530, DTL43_02095, EIZ93_15170, FOI11_000020, FOI11_20030, FWK02_03775, G3V95_05750, G4A38_06870, G4A47_19960, GNW61_15560, GOP25_16215, GQM21_00025, GRW05_03440, HMV95_11440, J0541_000369, JNP96_20710, QDW62_06300, SAMEA3752557_00912 発現宿主: ![]() ![]() #2: 化合物 | ChemComp-ACO / #3: 化合物 | ChemComp-PO4 / #4: 水 | ChemComp-HOH / | 研究の焦点であるリガンドがあるか | Y | Has protein modification | N | |
---|
-実験情報
-実験
実験 | 手法: 電子顕微鏡法 |
---|---|
EM実験 | 試料の集合状態: PARTICLE / 3次元再構成法: 単粒子再構成法 |
-
試料調製
構成要素 | 名称: Acetyltransferase / タイプ: COMPLEX / Entity ID: #1 / 由来: RECOMBINANT |
---|---|
由来(天然) | 生物種: ![]() ![]() |
由来(組換発現) | 生物種: ![]() ![]() |
緩衝液 | pH: 7.4 |
試料 | 包埋: NO / シャドウイング: NO / 染色: NO / 凍結: YES |
急速凍結 | 凍結剤: ETHANE |
-
電子顕微鏡撮影
実験機器 | ![]() モデル: Titan Krios / 画像提供: FEI Company |
---|---|
顕微鏡 | モデル: TFS KRIOS |
電子銃 | 電子線源: ![]() |
電子レンズ | モード: DARK FIELD / 最大 デフォーカス(公称値): 8000 nm / 最小 デフォーカス(公称値): 1500 nm |
撮影 | 電子線照射量: 50 e/Å2 フィルム・検出器のモデル: FEI FALCON IV (4k x 4k) |
-
解析
CTF補正 | タイプ: NONE |
---|---|
3次元再構成 | 解像度: 1.99 Å / 解像度の算出法: FSC 0.143 CUT-OFF / 粒子像の数: 5121944 / 対称性のタイプ: POINT |