[日本語] English
- PDB-9giu: Cryo-EM structure of human SLC45A4 in detergent -

+
データを開く


IDまたはキーワード:

読み込み中...

-
基本情報

登録情報
データベース: PDB / ID: 9giu
タイトルCryo-EM structure of human SLC45A4 in detergent
要素Solute carrier family 45 member 4
キーワードTRANSPORT PROTEIN / SLC / MFS / Polyamine / Spermidine
機能・相同性sucrose:proton symporter activity / sucrose transport / Major facilitator superfamily / Major Facilitator Superfamily / MFS transporter superfamily / membrane / 1,2-Distearoyl-sn-glycerophosphoethanolamine / CHOLESTEROL HEMISUCCINATE / Solute carrier family 45 member 4
機能・相同性情報
生物種Homo sapiens (ヒト)
手法電子顕微鏡法 / 単粒子再構成法 / クライオ電子顕微鏡法 / 解像度: 2.8 Å
データ登録者Markusson, S. / Deme, J.C. / Lea, S.M. / Newstead, S.
資金援助 英国, 米国, 3件
組織認可番号
Wellcome Trust215519/Z/19/Z 英国
Wellcome Trust219531/Z/19/Z 英国
National Institutes of Health/National Cancer Institute (NIH/NCI)Intramural Research Program 米国
引用
ジャーナル: To Be Published
タイトル: Cryo-EM structure of human SLC45A4 in detergent
著者: Markusson, S. / Deme, J.C. / Lea, S.M. / Newstead, S.
#1: ジャーナル: Acta Crystallogr D Struct Biol / : 2018
タイトル: Real-space refinement in PHENIX for cryo-EM and crystallography.
著者: Pavel V Afonine / Billy K Poon / Randy J Read / Oleg V Sobolev / Thomas C Terwilliger / Alexandre Urzhumtsev / Paul D Adams /
要旨: This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast ...This article describes the implementation of real-space refinement in the phenix.real_space_refine program from the PHENIX suite. The use of a simplified refinement target function enables very fast calculation, which in turn makes it possible to identify optimal data-restraint weights as part of routine refinements with little runtime cost. Refinement of atomic models against low-resolution data benefits from the inclusion of as much additional information as is available. In addition to standard restraints on covalent geometry, phenix.real_space_refine makes use of extra information such as secondary-structure and rotamer-specific restraints, as well as restraints or constraints on internal molecular symmetry. The re-refinement of 385 cryo-EM-derived models available in the Protein Data Bank at resolutions of 6 Å or better shows significant improvement of the models and of the fit of these models to the target maps.
#2: ジャーナル: Acta Crystallogr D Biol Crystallogr / : 2010
タイトル: Features and development of Coot.
著者: P Emsley / B Lohkamp / W G Scott / K Cowtan /
要旨: Coot is a molecular-graphics application for model building and validation of biological macromolecules. The program displays electron-density maps and atomic models and allows model manipulations ...Coot is a molecular-graphics application for model building and validation of biological macromolecules. The program displays electron-density maps and atomic models and allows model manipulations such as idealization, real-space refinement, manual rotation/translation, rigid-body fitting, ligand search, solvation, mutations, rotamers and Ramachandran idealization. Furthermore, tools are provided for model validation as well as interfaces to external programs for refinement, validation and graphics. The software is designed to be easy to learn for novice users, which is achieved by ensuring that tools for common tasks are 'discoverable' through familiar user-interface elements (menus and toolbars) or by intuitive behaviour (mouse controls). Recent developments have focused on providing tools for expert users, with customisable key bindings, extensions and an extensive scripting interface. The software is under rapid development, but has already achieved very widespread use within the crystallographic community. The current state of the software is presented, with a description of the facilities available and of some of the underlying methods employed.
#3: ジャーナル: Nat Methods / : 2017
タイトル: cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination.
著者: Ali Punjani / John L Rubinstein / David J Fleet / Marcus A Brubaker /
要旨: Single-particle electron cryomicroscopy (cryo-EM) is a powerful method for determining the structures of biological macromolecules. With automated microscopes, cryo-EM data can often be obtained in a ...Single-particle electron cryomicroscopy (cryo-EM) is a powerful method for determining the structures of biological macromolecules. With automated microscopes, cryo-EM data can often be obtained in a few days. However, processing cryo-EM image data to reveal heterogeneity in the protein structure and to refine 3D maps to high resolution frequently becomes a severe bottleneck, requiring expert intervention, prior structural knowledge, and weeks of calculations on expensive computer clusters. Here we show that stochastic gradient descent (SGD) and branch-and-bound maximum likelihood optimization algorithms permit the major steps in cryo-EM structure determination to be performed in hours or minutes on an inexpensive desktop computer. Furthermore, SGD with Bayesian marginalization allows ab initio 3D classification, enabling automated analysis and discovery of unexpected structures without bias from a reference map. These algorithms are combined in a user-friendly computer program named cryoSPARC (http://www.cryosparc.com).
#4: ジャーナル: Acta Crystallogr D Struct Biol / : 2018
タイトル: ISOLDE: a physically realistic environment for model building into low-resolution electron-density maps.
著者: Tristan Ian Croll /
要旨: This paper introduces ISOLDE, a new software package designed to provide an intuitive environment for high-fidelity interactive remodelling/refinement of macromolecular models into electron-density ...This paper introduces ISOLDE, a new software package designed to provide an intuitive environment for high-fidelity interactive remodelling/refinement of macromolecular models into electron-density maps. ISOLDE combines interactive molecular-dynamics flexible fitting with modern molecular-graphics visualization and established structural biology libraries to provide an immersive interface wherein the model constantly acts to maintain physically realistic conformations as the user interacts with it by directly tugging atoms with a mouse or haptic interface or applying/removing restraints. In addition, common validation tasks are accelerated and visualized in real time. Using the recently described 3.8 Å resolution cryo-EM structure of the eukaryotic minichromosome maintenance (MCM) helicase complex as a case study, it is demonstrated how ISOLDE can be used alongside other modern refinement tools to avoid common pitfalls of low-resolution modelling and improve the quality of the final model. A detailed analysis of changes between the initial and final model provides a somewhat sobering insight into the dangers of relying on a small number of validation metrics to judge the quality of a low-resolution model.
#5: ジャーナル: Elife / : 2018
タイトル: New tools for automated high-resolution cryo-EM structure determination in RELION-3.
著者: Jasenko Zivanov / Takanori Nakane / Björn O Forsberg / Dari Kimanius / Wim Jh Hagen / Erik Lindahl / Sjors Hw Scheres /
要旨: Here, we describe the third major release of RELION. CPU-based vector acceleration has been added in addition to GPU support, which provides flexibility in use of resources and avoids memory ...Here, we describe the third major release of RELION. CPU-based vector acceleration has been added in addition to GPU support, which provides flexibility in use of resources and avoids memory limitations. Reference-free autopicking with Laplacian-of-Gaussian filtering and execution of jobs from python allows non-interactive processing during acquisition, including 2D-classification, model generation and 3D-classification. Per-particle refinement of CTF parameters and correction of estimated beam tilt provides higher resolution reconstructions when particles are at different heights in the ice, and/or coma-free alignment has not been optimal. Ewald sphere curvature correction improves resolution for large particles. We illustrate these developments with publicly available data sets: together with a Bayesian approach to beam-induced motion correction it leads to resolution improvements of 0.2-0.7 Å compared to previous RELION versions.
#6: ジャーナル: J Struct Biol / : 2020
タイトル: WITHDRAWN: SIMPLE 3.0. Stream single-particle cryo-EM analysis in real time.
著者: Joseph Caesar / Cyril F Reboul / Chiara Machello / Simon Kiesewetter / Molly L Tang / Justin C Deme / Steven Johnson / Dominika Elmlund / Susan M Lea / Hans Elmlund /
履歴
登録2024年8月19日登録サイト: PDBE / 処理サイト: PDBE
改定 1.02025年7月30日Provider: repository / タイプ: Initial release
改定 1.02025年7月30日Data content type: EM metadata / Data content type: EM metadata / Provider: repository / タイプ: Initial release
改定 1.02025年7月30日Data content type: FSC / Data content type: FSC / Provider: repository / タイプ: Initial release
改定 1.02025年7月30日Data content type: Half map / Part number: 1 / Data content type: Half map / Provider: repository / タイプ: Initial release
改定 1.02025年7月30日Data content type: Half map / Part number: 2 / Data content type: Half map / Provider: repository / タイプ: Initial release
改定 1.02025年7月30日Data content type: Image / Data content type: Image / Provider: repository / タイプ: Initial release
改定 1.02025年7月30日Data content type: Mask / Part number: 1 / Data content type: Mask / Provider: repository / タイプ: Initial release
改定 1.02025年7月30日Data content type: Primary map / Data content type: Primary map / Provider: repository / タイプ: Initial release

-
構造の表示

構造ビューア分子:
MolmilJmol/JSmol

ダウンロードとリンク

-
集合体

登録構造単位
A: Solute carrier family 45 member 4
ヘテロ分子


分子量 (理論値)分子数
合計 (水以外)88,9069
ポリマ-84,7511
非ポリマー4,1558
30617
1


  • 登録構造と同一
  • 登録者・ソフトウェアが定義した集合体
  • 根拠: 電子顕微鏡法, not applicable, native gel electrophoresis
タイプ名称対称操作
identity operation1_555x,y,z1

-
要素

#1: タンパク質 Solute carrier family 45 member 4


分子量: 84750.562 Da / 分子数: 1 / 由来タイプ: 組換発現 / 由来: (組換発現) Homo sapiens (ヒト) / 遺伝子: SLC45A4, KIAA1126 / 発現宿主: Saccharomyces cerevisiae (パン酵母) / 株 (発現宿主): BJ5460 / 参照: UniProt: Q5BKX6
#2: 化合物
ChemComp-Y01 / CHOLESTEROL HEMISUCCINATE / コレステリルヘミスクシナ-ト


分子量: 486.726 Da / 分子数: 7 / 由来タイプ: 合成 / : C31H50O4
#3: 化合物 ChemComp-3PE / 1,2-Distearoyl-sn-glycerophosphoethanolamine / 3-SN-PHOSPHATIDYLETHANOLAMINE / 1,2-DIACYL-SN-GLYCERO-3-PHOSPHOETHANOLAMINE / DSPE


分子量: 748.065 Da / 分子数: 1 / 由来タイプ: 合成 / : C41H82NO8P / コメント: リン脂質*YM
#4: 水 ChemComp-HOH / water


分子量: 18.015 Da / 分子数: 17 / 由来タイプ: 天然 / : H2O
研究の焦点であるリガンドがあるかN
Has protein modificationN

-
実験情報

-
実験

実験手法: 電子顕微鏡法
EM実験試料の集合状態: PARTICLE / 3次元再構成法: 単粒子再構成法

-
試料調製

構成要素名称: SLC45A4 / タイプ: COMPLEX / Entity ID: #1 / 由来: RECOMBINANT
分子量実験値: NO
由来(天然)生物種: Homo sapiens (ヒト)
由来(組換発現)生物種: Saccharomyces cerevisiae (パン酵母) / : BJ5460
緩衝液pH: 7.5
試料濃度: 0.3 mg/ml / 包埋: NO / シャドウイング: NO / 染色: NO / 凍結: YES
試料支持グリッドの材料: GOLD / グリッドのサイズ: 300 divisions/in. / グリッドのタイプ: Quantifoil R1.2/1.3
急速凍結装置: FEI VITROBOT MARK IV / 凍結剤: ETHANE / 湿度: 100 % / 凍結前の試料温度: 283 K

-
電子顕微鏡撮影

実験機器
モデル: Titan Krios / 画像提供: FEI Company
顕微鏡モデル: FEI TITAN KRIOS
電子銃電子線源: FIELD EMISSION GUN / 加速電圧: 300 kV / 照射モード: FLOOD BEAM
電子レンズモード: BRIGHT FIELD / 倍率(公称値): 165000 X / 最大 デフォーカス(公称値): 2500 nm / 最小 デフォーカス(公称値): 600 nm
撮影電子線照射量: 57.6 e/Å2
フィルム・検出器のモデル: FEI FALCON IV (4k x 4k)
実像数: 21269
電子光学装置エネルギーフィルター名称: TFS Selectris X / エネルギーフィルタースリット幅: 10 eV

-
解析

CTF補正タイプ: PHASE FLIPPING AND AMPLITUDE CORRECTION
対称性点対称性: C1 (非対称)
3次元再構成解像度: 2.8 Å / 解像度の算出法: FSC 0.143 CUT-OFF / 粒子像の数: 700436 / 対称性のタイプ: POINT
精密化交差検証法: NONE

+
万見について

-
お知らせ

-
2022年2月9日: EMDBエントリの付随情報ファイルのフォーマットが新しくなりました

EMDBエントリの付随情報ファイルのフォーマットが新しくなりました

  • EMDBのヘッダファイルのバージョン3が、公式のフォーマットとなりました。
  • これまでは公式だったバージョン1.9は、アーカイブから削除されます。

関連情報:EMDBヘッダ

外部リンク:wwPDBはEMDBデータモデルのバージョン3へ移行します

-
2020年8月12日: 新型コロナ情報

新型コロナ情報

URL: https://pdbj.org/emnavi/covid19.php

新ページ: EM Navigatorに新型コロナウイルスの特設ページを開設しました。

関連情報:Covid-19情報 / 2020年3月5日: 新型コロナウイルスの構造データ

+
2020年3月5日: 新型コロナウイルスの構造データ

新型コロナウイルスの構造データ

関連情報:万見生物種 / 2020年8月12日: 新型コロナ情報

外部リンク:COVID-19特集ページ - PDBj / 今月の分子2020年2月:コロナウイルスプロテーアーゼ

+
2019年1月31日: EMDBのIDの桁数の変更

EMDBのIDの桁数の変更

  • EMDBエントリに付与されているアクセスコード(EMDB-ID)は4桁の数字(例、EMD-1234)でしたが、間もなく枯渇します。これまでの4桁のID番号は4桁のまま変更されませんが、4桁の数字を使い切った後に発行されるIDは5桁以上の数字(例、EMD-12345)になります。5桁のIDは2019年の春頃から発行される見通しです。
  • EM Navigator/万見では、接頭語「EMD-」は省略されています。

関連情報:Q: 「EMD」とは何ですか? / 万見/EM NavigatorにおけるID/アクセスコードの表記

外部リンク:EMDB Accession Codes are Changing Soon! / PDBjへお問い合わせ

+
2017年7月12日: PDB大規模アップデート

PDB大規模アップデート

  • 新バージョンのPDBx/mmCIF辞書形式に基づくデータがリリースされました。
  • 今回の更新はバージョン番号が4から5になる大規模なもので、全エントリデータの書き換えが行われる「Remediation」というアップデートに該当します。
  • このバージョンアップで、電子顕微鏡の実験手法に関する多くの項目の書式が改定されました(例:em_softwareなど)。
  • EM NavigatorとYorodumiでも、この改定に基づいた表示内容になります。

外部リンク:wwPDB Remediation / OneDepデータ基準に準拠した、より強化された内容のモデル構造ファイルが、PDBアーカイブで公開されました。

-
万見 (Yorodumi)

幾万の構造データを、幾万の視点から

  • 万見(Yorodumi)は、EMDB/PDB/SASBDBなどの構造データを閲覧するためのページです。
  • EM Navigatorの詳細ページの後継、Omokage検索のフロントエンドも兼ねています。

関連情報:EMDB / PDB / SASBDB / 3つのデータバンクの比較 / 万見検索 / 2016年8月31日: 新しいEM Navigatorと万見 / 万見文献 / Jmol/JSmol / 機能・相同性情報 / 新しいEM Navigatorと万見の変更点

他の情報も見る