[English] 日本語
Yorodumi
- PDB-9dwv: Ternary complex of CRBN-DDB1-PPIL4 RRM domain with FPFT-2216 -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9dwv
TitleTernary complex of CRBN-DDB1-PPIL4 RRM domain with FPFT-2216
Components
  • DNA damage-binding protein 1
  • Peptidyl-prolyl cis-trans isomerase-like 4
  • Protein cereblon
KeywordsLIGASE / CRBN / molecular glue / E3 ligase / PPIL4
Function / homology
Function and homology information


negative regulation of monoatomic ion transmembrane transport / positive regulation by virus of viral protein levels in host cell / spindle assembly involved in female meiosis / epigenetic programming in the zygotic pronuclei / UV-damage excision repair / biological process involved in interaction with symbiont / regulation of mitotic cell cycle phase transition / WD40-repeat domain binding / Cul4A-RING E3 ubiquitin ligase complex / Cul4-RING E3 ubiquitin ligase complex ...negative regulation of monoatomic ion transmembrane transport / positive regulation by virus of viral protein levels in host cell / spindle assembly involved in female meiosis / epigenetic programming in the zygotic pronuclei / UV-damage excision repair / biological process involved in interaction with symbiont / regulation of mitotic cell cycle phase transition / WD40-repeat domain binding / Cul4A-RING E3 ubiquitin ligase complex / Cul4-RING E3 ubiquitin ligase complex / Cul4B-RING E3 ubiquitin ligase complex / ubiquitin ligase complex scaffold activity / negative regulation of reproductive process / negative regulation of developmental process / locomotory exploration behavior / cullin family protein binding / viral release from host cell / positive regulation of Wnt signaling pathway / ectopic germ cell programmed cell death / negative regulation of protein-containing complex assembly / positive regulation of viral genome replication / proteasomal protein catabolic process / positive regulation of gluconeogenesis / mRNA Splicing - Major Pathway / Recognition of DNA damage by PCNA-containing replication complex / DNA Damage Recognition in GG-NER / peptidylprolyl isomerase / nucleotide-excision repair / peptidyl-prolyl cis-trans isomerase activity / positive regulation of protein-containing complex assembly / Dual Incision in GG-NER / Transcription-Coupled Nucleotide Excision Repair (TC-NER) / Formation of TC-NER Pre-Incision Complex / Formation of Incision Complex in GG-NER / regulation of circadian rhythm / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / Wnt signaling pathway / positive regulation of protein catabolic process / cellular response to UV / rhythmic process / site of double-strand break / Neddylation / ubiquitin-dependent protein catabolic process / protein-macromolecule adaptor activity / damaged DNA binding / proteasome-mediated ubiquitin-dependent protein catabolic process / Potential therapeutics for SARS / transmembrane transporter binding / chromosome, telomeric region / protein ubiquitination / DNA repair / apoptotic process / DNA damage response / negative regulation of apoptotic process / protein-containing complex binding / nucleolus / perinuclear region of cytoplasm / protein-containing complex / extracellular space / DNA binding / RNA binding / extracellular exosome / nucleoplasm / metal ion binding / nucleus / membrane / cytosol / cytoplasm
Similarity search - Function
PPIL4-like, cyclophilin domain / Cyclophilin-RNA interacting protein / Yippee/Mis18/Cereblon / Yippee zinc-binding/DNA-binding /Mis18, centromere assembly / CULT domain / CULT domain profile. / Lon N-terminal domain profile. / Lon protease, N-terminal domain / Lon protease, N-terminal domain superfamily / ATP-dependent protease La (LON) substrate-binding domain ...PPIL4-like, cyclophilin domain / Cyclophilin-RNA interacting protein / Yippee/Mis18/Cereblon / Yippee zinc-binding/DNA-binding /Mis18, centromere assembly / CULT domain / CULT domain profile. / Lon N-terminal domain profile. / Lon protease, N-terminal domain / Lon protease, N-terminal domain superfamily / ATP-dependent protease La (LON) substrate-binding domain / Found in ATP-dependent protease La (LON) / RSE1/DDB1/CPSF1 second beta-propeller / Cleavage/polyadenylation specificity factor, A subunit, C-terminal / Cleavage/polyadenylation specificity factor, A subunit, N-terminal / : / CPSF A subunit region / RSE1/DDB1/CPSF1 first beta-propeller / PUA-like superfamily / Cyclophilin-type peptidyl-prolyl cis-trans isomerase domain profile. / Cyclophilin-type peptidyl-prolyl cis-trans isomerase domain / Cyclophilin type peptidyl-prolyl cis-trans isomerase/CLD / Cyclophilin-like domain superfamily / RNA recognition motif / RNA recognition motif / Eukaryotic RNA Recognition Motif (RRM) profile. / RNA recognition motif domain / RNA-binding domain superfamily / Nucleotide-binding alpha-beta plait domain superfamily / WD40-repeat-containing domain superfamily / WD40/YVTN repeat-like-containing domain superfamily
Similarity search - Domain/homology
: / DNA damage-binding protein 1 / Peptidyl-prolyl cis-trans isomerase-like 4 / Protein cereblon
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.5 Å
AuthorsBaek, K. / Fischer, E.S.
Funding support United States, 2items
OrganizationGrant numberCountry
National Institutes of Health/National Cancer Institute (NIH/NCI)R01CA214608 United States
Damon Runyon Cancer Research FoundationDRG-2514-24 United States
CitationJournal: Nat Commun / Year: 2025
Title: Unveiling the hidden interactome of CRBN molecular glues.
Authors: Kheewoong Baek / Rebecca J Metivier / Shourya S Roy Burman / Jonathan W Bushman / Hojong Yoon / Ryan J Lumpkin / Julia K Ryan / Dinah M Abeja / Megha Lakshminarayan / Hong Yue / Samuel Ojeda ...Authors: Kheewoong Baek / Rebecca J Metivier / Shourya S Roy Burman / Jonathan W Bushman / Hojong Yoon / Ryan J Lumpkin / Julia K Ryan / Dinah M Abeja / Megha Lakshminarayan / Hong Yue / Samuel Ojeda / Yuan Xiong / Jianwei Che / Alyssa L Verano / Anna M Schmoker / Nathanael S Gray / Katherine A Donovan / Eric S Fischer /
Abstract: Induced proximity by molecular glues refers to strategies that leverage the recruitment of proteins to facilitate their modification, regulation or degradation. As prospective design of molecular ...Induced proximity by molecular glues refers to strategies that leverage the recruitment of proteins to facilitate their modification, regulation or degradation. As prospective design of molecular glues remains challenging, unbiased discovery methods are necessary to discover new chemical targets. Here we establish a high throughput affinity proteomics workflow leveraging E3 ligase activity-impaired CRBN-DDB1ΔB in cell lysates for the unbiased identification of molecular glue targets. By mapping the interaction landscape of CRBN-binding molecular glues, we unveil 298 protein targets and demonstrate the utility of enrichment methods for identifying targets overlooked by established methods. We use a computational workflow to estimate target confidence and perform biochemical and structural validation of uncharacterized neo-substrates. We further identify a lead compound for the previously untargeted non-zinc finger PPIL4 through a biochemical screen. Our study provides a comprehensive inventory of targets chemically recruited to CRBN and delivers a robust and scalable workflow for identifying drug-induced protein interactions in cell lysates.
History
DepositionOct 10, 2024Deposition site: RCSB / Processing site: RCSB
Revision 1.0Aug 6, 2025Provider: repository / Type: Initial release

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: DNA damage-binding protein 1
B: Protein cereblon
C: Peptidyl-prolyl cis-trans isomerase-like 4
hetero molecules


Theoretical massNumber of molelcules
Total (without water)187,8285
Polymers187,4703
Non-polymers3582
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein DNA damage-binding protein 1 / DDB p127 subunit / DNA damage-binding protein a / DDBa / Damage-specific DNA-binding protein 1 / ...DDB p127 subunit / DNA damage-binding protein a / DDBa / Damage-specific DNA-binding protein 1 / HBV X-associated protein 1 / XAP-1 / UV-damaged DNA-binding factor / UV-damaged DNA-binding protein 1 / UV-DDB 1 / XPE-binding factor / XPE-BF / Xeroderma pigmentosum group E-complementing protein / XPCe


Mass: 127097.469 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Details: DDB1 (masking away BPB domain, residues 396-705) / Source: (gene. exp.) Homo sapiens (human) / Gene: DDB1, XAP1 / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: Q16531
#2: Protein Protein cereblon


Mass: 50747.805 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: CRBN, AD-006 / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: Q96SW2
#3: Protein Peptidyl-prolyl cis-trans isomerase-like 4 / PPIase / Cyclophilin-like protein PPIL4 / Rotamase PPIL4


Mass: 9624.897 Da / Num. of mol.: 1 / Fragment: RRM domain, residues 240-318
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PPIL4 / Production host: Trichoplusia ni (cabbage looper) / References: UniProt: Q8WUA2, peptidylprolyl isomerase
#4: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: Zn
#5: Chemical ChemComp-A1BC8 / (3S)-3-[(4M)-4-(4-methoxythiophen-3-yl)-1H-1,2,3-triazol-1-yl]piperidine-2,6-dione


Mass: 292.314 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C12H12N4O3S / Feature type: SUBJECT OF INVESTIGATION
Has ligand of interestY
Has protein modificationN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Ternary complex of CRBN-DDB1-PPIL4 RRM domain with FPFT-2216
Type: COMPLEX / Entity ID: #1-#3 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Trichoplusia ni (cabbage looper)
Buffer solutionpH: 7.5
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Talos Arctica / Image courtesy: FEI Company
MicroscopyModel: FEI TALOS ARCTICA
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 200 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2000 nm / Nominal defocus min: 800 nm
Image recordingElectron dose: 54 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

EM softwareName: PHENIX / Category: model refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.5 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 219802 / Symmetry type: POINT

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more