[English] 日本語
Yorodumi
- PDB-9cv6: Cryo-EM structure of the Carboxyltransferase Domain of Trichoplus... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 9cv6
TitleCryo-EM structure of the Carboxyltransferase Domain of Trichoplusia ni Acetyl-Coenzyme A Carboxylase
ComponentsAcetyl-CoA carboxylase
KeywordsTRANSFERASE / Trichoplusia ni / Carboxyltransferase Domain / Acetyl-Coenzyme A Carboxylase / Cryo-EM / Pest Control
Function / homology
Function and homology information


malonyl-CoA biosynthetic process / acetyl-CoA carboxylase activity / fatty acid biosynthetic process / mitochondrion / ATP binding / metal ion binding
Similarity search - Function
Acetyl-CoA carboxylase, central domain / : / : / Acetyl-CoA carboxylase, central region / Acetyl-CoA carboxylase, BT domain / Acetyl-coenzyme A carboxyltransferase, C-terminal / Acetyl-coenzyme A (CoA) carboxyltransferase C-terminal domain profile. / Acetyl-coenzyme A carboxyltransferase, N-terminal / Acetyl-coenzyme A (CoA) carboxyltransferase N-terminal domain profile. / Acetyl-CoA carboxylase ...Acetyl-CoA carboxylase, central domain / : / : / Acetyl-CoA carboxylase, central region / Acetyl-CoA carboxylase, BT domain / Acetyl-coenzyme A carboxyltransferase, C-terminal / Acetyl-coenzyme A (CoA) carboxyltransferase C-terminal domain profile. / Acetyl-coenzyme A carboxyltransferase, N-terminal / Acetyl-coenzyme A (CoA) carboxyltransferase N-terminal domain profile. / Acetyl-CoA carboxylase / Carboxyl transferase domain / Biotin-binding site / Biotin-requiring enzymes attachment site. / Biotin carboxylase-like, N-terminal domain / Biotin carboxylase, C-terminal / Biotin carboxylation domain / Biotin carboxylase, N-terminal domain / Biotin carboxylase C-terminal domain / Biotin carboxylation domain profile. / Biotin carboxylase C-terminal domain / Carbamoyl-phosphate synthase subdomain signature 1. / Carbamoyl-phosphate synthetase large subunit-like, ATP-binding domain / Carbamoyl-phosphate synthase L chain, ATP binding domain / Biotin-requiring enzyme / Rudiment single hybrid motif / Biotinyl/lipoyl domain profile. / Biotin/lipoyl attachment / Single hybrid motif / ATP-grasp fold, subdomain 1 / Pre-ATP-grasp domain superfamily / ATP-grasp fold / ATP-grasp fold profile. / ClpP/crotonase-like domain superfamily / Carbamoyl-phosphate synthase subdomain signature 2.
Similarity search - Domain/homology
Acetyl-CoA carboxylase isoform X5
Similarity search - Component
Biological speciesTrichoplusia ni (cabbage looper)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.12 Å
AuthorsLiu, B. / Wang, D. / Bu, F. / Yang, G.
Funding support1items
OrganizationGrant numberCountry
Not funded
CitationJournal: J Biol Chem / Year: 2024
Title: Structure of the endogenous insect acetyl-coA carboxylase carboxyltransferase domain.
Authors: Dong Wang / Fan Bu / Ge Yang / Hannah Brenke / Bin Liu /
Abstract: Acetyl-coenzyme A carboxylases (ACCs) are pivotal in fatty acid metabolism, converting acetyl-CoA to malonyl-CoA. While ACCs in humans, plants, and microbes have been extensively studied, insect ...Acetyl-coenzyme A carboxylases (ACCs) are pivotal in fatty acid metabolism, converting acetyl-CoA to malonyl-CoA. While ACCs in humans, plants, and microbes have been extensively studied, insect ACCs, crucial for lipid biosynthesis and physiological processes, remain relatively unexplored. Unlike mammals, which have ACC1 and ACC2 in different tissues, insects possess a single ACC gene, underscoring its unique role in their metabolism. Noctuid moths, such as Trichoplusia ni, are major agricultural pests causing significant crop damage and economic loss. Their resistance to both biological and synthetic insecticides complicates pest control. Recent research has introduced cyclic ketoenols as novel insecticides targeting ACCs, yet structural information to guide their design is limited. Here, we present a 3.12 Å cryo-EM structure of the carboxyltransferase (CT) domain of T. ni ACC, offering the first detailed structural insights into insect ACCs. Our structural comparisons with ACC CT domains from other species and analyses of drug-binding sites can guide future drug modification and design. Notably, unique interactions between the CT and the central domain in T. ni ACC provide new directions for studying the ACC holoenzyme. These findings contribute valuable information for pest control and a basic biological understanding of lipid biosynthesis.
History
DepositionJul 28, 2024Deposition site: RCSB / Processing site: RCSB
Revision 1.0Sep 25, 2024Provider: repository / Type: Initial release
Revision 1.1Oct 2, 2024Group: Data collection / Database references / Category: citation / citation_author / em_admin
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_ASTM / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _citation_author.identifier_ORCID / _em_admin.last_update
Revision 1.2Oct 30, 2024Group: Data collection / Database references / Structure summary
Category: citation / em_admin / pdbx_entry_details / Item: _citation.journal_volume / _em_admin.last_update

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Acetyl-CoA carboxylase
B: Acetyl-CoA carboxylase


Theoretical massNumber of molelcules
Total (without water)175,4652
Polymers175,4652
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein Acetyl-CoA carboxylase


Mass: 87732.602 Da / Num. of mol.: 2 / Fragment: Carboxyltransferase Domain / Source method: isolated from a natural source / Source: (natural) Trichoplusia ni (cabbage looper) / References: UniProt: A0A7E5W2X9
Has protein modificationN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Trichoplusia ni Acetyl-Coenzyme A Carboxylase / Type: COMPLEX / Entity ID: all / Source: NATURAL
Source (natural)Organism: Trichoplusia ni (cabbage looper)
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 277 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal magnification: 130000 X / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm / Cs: 2.7 mm / C2 aperture diameter: 50 µm / Alignment procedure: COMA FREE
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER / Temperature (max): 77 K / Temperature (min): 63 K
Image recordingAverage exposure time: 1.7 sec. / Electron dose: 53.7 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Num. of grids imaged: 1 / Num. of real images: 6463
EM imaging opticsEnergyfilter name: GIF Bioquantum / Energyfilter slit width: 20 eV
Image scansWidth: 4092 / Height: 5760

-
Processing

EM softwareName: PHENIX / Version: 1.21_5207: / Category: model refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
Particle selectionNum. of particles selected: 3236084
SymmetryPoint symmetry: C2 (2 fold cyclic)
3D reconstructionResolution: 3.12 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 154035 / Algorithm: SIMULTANEOUS ITERATIVE (SIRT) / Num. of class averages: 1 / Symmetry type: POINT
Atomic model buildingB value: 47.91 / Protocol: OTHER / Space: REAL
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00412270
ELECTRON MICROSCOPYf_angle_d0.81416634
ELECTRON MICROSCOPYf_dihedral_angle_d5.3751690
ELECTRON MICROSCOPYf_chiral_restr0.0551830
ELECTRON MICROSCOPYf_plane_restr0.012186

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more