+
データを開く
-
基本情報
登録情報 | データベース: PDB / ID: 9bc8 | ||||||
---|---|---|---|---|---|---|---|
タイトル | Cargo-loaded Myxococcus xanthus EncA encapsulin engineered pore mutant with T=4 icosahedral symmetry | ||||||
![]() |
| ||||||
![]() | VIRUS LIKE PARTICLE / encapsulin / nanocompartment / pore mutant | ||||||
機能・相同性 | ![]() encapsulin nanocompartment / iron ion transport / intracellular iron ion homeostasis / metal ion binding 類似検索 - 分子機能 | ||||||
生物種 | ![]() | ||||||
手法 | 電子顕微鏡法 / 単粒子再構成法 / クライオ電子顕微鏡法 / 解像度: 3.46 Å | ||||||
![]() | Andreas, M.P. / Kwon, S. / Giessen, T.W. | ||||||
資金援助 | ![]()
| ||||||
![]() | ![]() タイトル: Pore Engineering as a General Strategy to Improve Protein-Based Enzyme Nanoreactor Performance. 著者: Seokmu Kwon / Michael P Andreas / Tobias W Giessen / ![]() 要旨: Enzyme nanoreactors are nanoscale compartments consisting of encapsulated enzymes and a selectively permeable barrier. Sequestration and colocalization of enzymes can increase catalytic activity, ...Enzyme nanoreactors are nanoscale compartments consisting of encapsulated enzymes and a selectively permeable barrier. Sequestration and colocalization of enzymes can increase catalytic activity, stability, and longevity, highly desirable features for many biotechnological and biomedical applications of enzyme catalysts. One promising strategy to construct enzyme nanoreactors is to repurpose protein nanocages found in nature. However, protein-based enzyme nanoreactors often exhibit decreased catalytic activity, partially caused by a mismatch of protein shell selectivity and the substrate requirements of encapsulated enzymes. No broadly applicable and modular protein-based nanoreactor platform is currently available. Here, we introduce a pore-engineered universal enzyme nanoreactor platform based on encapsulins-microbial self-assembling protein nanocompartments with programmable and selective enzyme packaging capabilities. We structurally characterize our protein shell designs via cryo-electron microscopy and highlight their polymorphic nature. Through fluorescence polarization assays, we show their improved molecular flux behavior and highlight their expanded substrate range via a number of proof-of-concept enzyme nanoreactor designs. This work lays the foundation for utilizing our encapsulin-based nanoreactor platform for diverse future biotechnological and biomedical applications. | ||||||
履歴 |
|
-
構造の表示
構造ビューア | 分子: ![]() ![]() |
---|
-
ダウンロードとリンク
-
ダウンロード
PDBx/mmCIF形式 | ![]() | 222.9 KB | 表示 | ![]() |
---|---|---|---|---|
PDB形式 | ![]() | 181.3 KB | 表示 | ![]() |
PDBx/mmJSON形式 | ![]() | ツリー表示 | ![]() | |
その他 | ![]() |
-検証レポート
アーカイブディレクトリ | ![]() ![]() | HTTPS FTP |
---|
-関連構造データ
関連構造データ | ![]() 44427MC ![]() 9b9iC ![]() 9b9qC M: このデータのモデリングに利用したマップデータ C: 同じ文献を引用 ( |
---|---|
類似構造データ | 類似検索 - 機能・相同性 ![]() |
-
リンク
-
集合体
登録構造単位 | ![]()
|
---|---|
1 | ![]()
| x 60
2 |
|
3 | ![]()
| x 5
4 | ![]()
| x 6
5 | ![]()
|
対称性 | 点対称性: (シェーンフリース記号: I (正20面体型対称)) |
-
要素
#1: タンパク質 | 分子量: 30901.014 Da / 分子数: 4 / 変異: I203G, Y204G / 由来タイプ: 組換発現 / 詳細: del(205-210) 由来: (組換発現) ![]() 遺伝子: encA, MXAN_3556 / 発現宿主: ![]() ![]() #2: タンパク質・ペプチド | 分子量: 1415.685 Da / 分子数: 4 Fragment: C-terminal targeting peptide (UNP residues 119-130) 由来タイプ: 組換発現 詳細: C-terminal targeting peptide of a SNAP-Tag-targeting peptide cargo protein. 由来: (組換発現) ![]() 遺伝子: encC, MXAN_4464 / 発現宿主: ![]() ![]() Has protein modification | N | |
---|
-実験情報
-実験
実験 | 手法: 電子顕微鏡法 |
---|---|
EM実験 | 試料の集合状態: PARTICLE / 3次元再構成法: 単粒子再構成法 |
-
試料調製
構成要素 |
| ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
分子量 |
| ||||||||||||||||||||||||
由来(天然) |
| ||||||||||||||||||||||||
由来(組換発現) |
| ||||||||||||||||||||||||
緩衝液 | pH: 7.5 / 詳細: 150 mM NaCl, 20 mM Tris pH 7.5 | ||||||||||||||||||||||||
緩衝液成分 |
| ||||||||||||||||||||||||
試料 | 濃度: 4.1 mg/ml / 包埋: NO / シャドウイング: NO / 染色: NO / 凍結: YES | ||||||||||||||||||||||||
試料支持 | 詳細: Glow discharge was performed under vacuum at 5 mA for 60 seconds. グリッドの材料: COPPER / グリッドのサイズ: 200 divisions/in. / グリッドのタイプ: Quantifoil R1.2/1.3 | ||||||||||||||||||||||||
急速凍結 | 装置: FEI VITROBOT MARK IV / 凍結剤: ETHANE / 湿度: 100 % / 凍結前の試料温度: 295 K 詳細: Blot force: 20 Blot time: 4 seconds Wait time: 0 seconds |
-
電子顕微鏡撮影
実験機器 | ![]() モデル: Talos Arctica / 画像提供: FEI Company |
---|---|
顕微鏡 | モデル: FEI TECNAI ARCTICA |
電子銃 | 電子線源: ![]() |
電子レンズ | モード: BRIGHT FIELD / 倍率(公称値): 45000 X / 最大 デフォーカス(公称値): 1800 nm / 最小 デフォーカス(公称値): 1000 nm |
撮影 | 平均露光時間: 6 sec. / 電子線照射量: 39.56 e/Å2 / 検出モード: COUNTING フィルム・検出器のモデル: GATAN K2 SUMMIT (4k x 4k) 撮影したグリッド数: 1 / 実像数: 706 |
画像スキャン | 横: 3710 / 縦: 3838 / 動画フレーム数/画像: 30 |
-
解析
EMソフトウェア |
| ||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTF補正 | タイプ: PHASE FLIPPING AND AMPLITUDE CORRECTION | ||||||||||||||||||||||||||||||||||||||||||||||||||
粒子像の選択 | 選択した粒子像数: 37600 | ||||||||||||||||||||||||||||||||||||||||||||||||||
対称性 | 点対称性: I (正20面体型対称) | ||||||||||||||||||||||||||||||||||||||||||||||||||
3次元再構成 | 解像度: 3.46 Å / 解像度の算出法: FSC 0.143 CUT-OFF / 粒子像の数: 4386 詳細: Homogeneous refinement was performed against the intial ab-initio map using I symmetry, per-particle defocus optimization, per-group CTF parameterization, and Ewald sphere correction. 対称性のタイプ: POINT | ||||||||||||||||||||||||||||||||||||||||||||||||||
原子モデル構築 | B value: 60.6 / プロトコル: FLEXIBLE FIT / 空間: REAL / Target criteria: cross-correlation coefficient 詳細: ChimeraX v1.2.5 was first used to place the starting model (PDB: 7S4Q) in the cryo-EM map by using the fit in map command. The model was then manually refined using Coot v 0.9.8.1, followed ...詳細: ChimeraX v1.2.5 was first used to place the starting model (PDB: 7S4Q) in the cryo-EM map by using the fit in map command. The model was then manually refined using Coot v 0.9.8.1, followed by iterative real-space refinements in Phenix v1.20.1-4487-000. BioMT operators were identified from the cryo-EM map using map_symmetry command in Phenix then applied to the model using the apply_ncs command to assemble the complete shell. Real-space refinement was repeated in Phenix with NCS constraints applied. The BioMT operators were then identified using find_ncs command in Phenix and applied to the header of a protomer of the NCS-refined model. | ||||||||||||||||||||||||||||||||||||||||||||||||||
原子モデル構築 | PDB-ID: 7S4Q Accession code: 7S4Q / Source name: PDB / タイプ: experimental model |