[English] 日本語
Yorodumi
- PDB-8zxp: Cryo-EM structure of TmaT-TMA complexes -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8zxp
TitleCryo-EM structure of TmaT-TMA complexes
ComponentsTrimethylamine transporter
KeywordsELECTRON TRANSPORT / TMA
Function / homologyBCCT transporter family / BCCT, betaine/carnitine/choline family transporter / transmembrane transporter activity / plasma membrane / N,N-dimethylmethanamine / Trimethylamine transporter
Function and homology information
Biological speciesMyroides profundi (bacteria)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.09 Å
AuthorsChao, G.
Funding support1items
OrganizationGrant numberCountry
Not funded
CitationJournal: mBio / Year: 2025
Title: Structural basis of a microbial trimethylamine transporter.
Authors: Chao Gao / Hai-Tao Ding / Kang Li / Hai-Yan Cao / Ning Wang / Zeng-Tian Gu / Qing Wang / Mei-Ling Sun / Xiu-Lan Chen / Yin Chen / Yu-Zhong Zhang / Hui-Hui Fu / Chun-Yang Li /
Abstract: Trimethylamine (TMA), a simple trace biogenic amine resulting from the decomposition of proteins and other macromolecules, is ubiquitous in nature. It is found in the human gut as well as in various ...Trimethylamine (TMA), a simple trace biogenic amine resulting from the decomposition of proteins and other macromolecules, is ubiquitous in nature. It is found in the human gut as well as in various terrestrial and marine ecosystems. While the role of TMA in promoting cardiovascular diseases and depolarizing olfactory sensory neurons in humans has only recently been explored, many microbes are well known for their ability to utilize TMA as a carbon, nitrogen, and energy source. Here, we report the first structure of a TMA transporter, TmaT, originally identified from a marine bacterium. TmaT is a member of the betaine-choline-carnitine transporter family, and we show that TmaT is an Na/TMA symporter, which possessed high specificity and binding affinity toward TMA. Furthermore, the structures of TmaT and two TmaT-TMA complexes were solved by cryo-EM. TmaT forms a homotrimer structure in solution. Each TmaT monomer has 12 transmembrane helices, and the TMA transport channel is formed by a four-helix bundle. TMA can move between different aromatic boxes, which provides the structural basis of TmaT importing TMA. When TMA is bound in location I, residues Trp146, Trp151, Tyr154, and Trp326 form an aromatic box to accommodate TMA. Moreover, Met105 also plays an important role in the binding of TMA. When TMA is transferred to location II, it is bound in the aromatic box formed by Trp325, Trp326, and Trp329. Based on our results, we proposed the TMA transport mechanism by TmaT. This study provides novel insights into TMA transport across biological membranes.
IMPORTANCE: The volatile trimethylamine (TMA) plays an important role in promoting cardiovascular diseases and depolarizing olfactory sensory neurons in humans and serves as a key nutrient source for ...IMPORTANCE: The volatile trimethylamine (TMA) plays an important role in promoting cardiovascular diseases and depolarizing olfactory sensory neurons in humans and serves as a key nutrient source for a variety of ubiquitous marine microbes. While the TMA transporter TmaT has been identified from a marine bacterium, the structure of TmaT and the molecular mechanism involved in TMA transport remain unclear. In this study, we elucidated the high-resolution cryo-EM structures of TmaT and TmaT-TMA complexes and revealed the TMA binding and transport mechanisms by structural and biochemical analyses. The results advance our understanding of the TMA transport processes across biological membranes.
History
DepositionJun 14, 2024Deposition site: PDBJ / Processing site: PDBC
Revision 1.0Nov 6, 2024Provider: repository / Type: Initial release
Revision 1.1May 28, 2025Group: Data collection / Database references / Category: citation / citation_author / em_admin
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _em_admin.last_update

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Trimethylamine transporter
B: Trimethylamine transporter
C: Trimethylamine transporter
hetero molecules


Theoretical massNumber of molelcules
Total (without water)180,0426
Polymers179,8653
Non-polymers1773
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

#1: Protein Trimethylamine transporter / TMA transporter / TMA-specific transporter


Mass: 59955.051 Da / Num. of mol.: 3
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Myroides profundi (bacteria) / Gene: tmaT, MPR_0426 / Production host: Escherichia coli (E. coli) / References: UniProt: A0A0B5RUB0
#2: Chemical ChemComp-KEN / N,N-dimethylmethanamine


Mass: 59.110 Da / Num. of mol.: 3 / Source method: obtained synthetically / Formula: C3H9N / Feature type: SUBJECT OF INVESTIGATION
Has ligand of interestY
Has protein modificationN

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: sodium-trimethylamine symporter TmaT binding with TMA / Type: COMPLEX / Entity ID: #1 / Source: RECOMBINANT
Source (natural)Organism: Myroides profundi (bacteria)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 8
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: SPOT SCAN
Electron lensMode: 4D-STEM / Nominal defocus max: 2500 nm / Nominal defocus min: 1500 nm
Image recordingElectron dose: 50.23 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.09 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 148358 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00511940
ELECTRON MICROSCOPYf_angle_d0.94316293
ELECTRON MICROSCOPYf_dihedral_angle_d5.4921539
ELECTRON MICROSCOPYf_chiral_restr0.0521881
ELECTRON MICROSCOPYf_plane_restr0.0071962

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more