National Natural Science Foundation of China (NSFC)
31800052
China
Citation
Journal: Angew Chem Int Ed Engl / Year: 2025 Title: Formation of the Diketopiperazine Moiety by a Distinct Condensation-Like Domain in Hangtaimycin Biosynthesis. Authors: Qing Mei / Shijuan Wu / Minghe Luo / Shunjia Ji / Jiayi Guo / Chuan Dong / Guo Sun / Jian Wang / Zixin Deng / Yi-Lei Zhao / Zhengyu Zhang / Yuhui Sun / Abstract: Non-ribosomal peptide synthetases (NRPSs) are key enzymes in pharmaceutical synthesis, with condensation (C) domains catalyzing amide bond formation between aminoacyl substrates. However, recent ...Non-ribosomal peptide synthetases (NRPSs) are key enzymes in pharmaceutical synthesis, with condensation (C) domains catalyzing amide bond formation between aminoacyl substrates. However, recent research has elucidated that the catalytic capabilities of C domains extend beyond the traditional formation of peptide bonds. In this study, we elucidate the cyclization mechanism of the NRPS-derived natural products hangtaimycin (HTM), characterized by the formation of a 2,5-diketopiperazine (DKP) moiety which involves an intramolecular vinylamide-mediated nucleophilic attack instead of an N-terminal amino group. This cyclization is catalyzed by a terminal condensation-like (C) domain within the NRPS enzyme HtmB2. We investigated the evolutionary specificity of the HtmB2-C within Streptomyces spectabilis CCTCC M2017417. Employing a multidisciplinary analytical approach, we have delineated the molecular underpinnings of DKP formation within the HTM biosynthesis. This process is facilitated by residue R2776, which modulates the formation of reactive species and stabilizes the amidate through electrostatic interactions. Besides, we found a positive correlation between the alkaline strength of the residue at position 2776 and the activity of HtmB2-C. Our study elucidates the formation mechanism of DKPs in NRPS-derived natural products, thereby bridging a critical gap in the structural and mechanistic understanding of this field.
Mass: 61822.629 Da / Num. of mol.: 2 Source method: isolated from a genetically manipulated source Source: (gene. exp.) Streptomyces (bacteria) / Production host: Escherichia coli (E. coli)
Has protein modification
N
-
Experimental details
-
Experiment
Experiment
Method: ELECTRON MICROSCOPY
EM experiment
Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction
-
Sample preparation
Component
Name: Dimer of HtmB2-CT / Type: COMPLEX / Entity ID: all / Source: RECOMBINANT
Source (natural)
Organism: Streptomyces (bacteria)
Source (recombinant)
Organism: Escherichia coli (E. coli)
Buffer solution
pH: 7.5
Specimen
Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Vitrification
Cryogen name: ETHANE
-
Electron microscopy imaging
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
Microscopy
Model: FEI TITAN KRIOS
Electron gun
Electron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: SPOT SCAN
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi