[English] 日本語
Yorodumi
- PDB-8wg8: Cryo-EM structures of peptide free and Gs-coupled GCGR -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8wg8
TitleCryo-EM structures of peptide free and Gs-coupled GCGR
Components
  • (Guanine nucleotide-binding protein ...) x 3
  • Glucagon receptor
  • Nanobody-35
  • PRO-PRO-PRO-PRO-PHE-SER-ASN-LEU-VAL-MET-ASP-ASP-LEU-LYS-ASN-LYS-LYS
KeywordsMEMBRANE PROTEIN / G protein-coupled receptor / ligand recognition / receptor activation / unimolecular agonist
Function / homology
Function and homology information


regulation of glycogen metabolic process / glucagon receptor activity / G-protein activation / Activation of the phototransduction cascade / Glucagon-type ligand receptors / Thromboxane signalling through TP receptor / Sensory perception of sweet, bitter, and umami (glutamate) taste / G beta:gamma signalling through PI3Kgamma / G beta:gamma signalling through CDC42 / Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding ...regulation of glycogen metabolic process / glucagon receptor activity / G-protein activation / Activation of the phototransduction cascade / Glucagon-type ligand receptors / Thromboxane signalling through TP receptor / Sensory perception of sweet, bitter, and umami (glutamate) taste / G beta:gamma signalling through PI3Kgamma / G beta:gamma signalling through CDC42 / Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding / Activation of G protein gated Potassium channels / Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits / Ca2+ pathway / G alpha (z) signalling events / Vasopressin regulates renal water homeostasis via Aquaporins / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / Adrenaline,noradrenaline inhibits insulin secretion / ADP signalling through P2Y purinoceptor 12 / G alpha (q) signalling events / Thrombin signalling through proteinase activated receptors (PARs) / Activation of G protein gated Potassium channels / G-protein activation / G beta:gamma signalling through PI3Kgamma / Prostacyclin signalling through prostacyclin receptor / G beta:gamma signalling through PLC beta / ADP signalling through P2Y purinoceptor 1 / Thromboxane signalling through TP receptor / Presynaptic function of Kainate receptors / G beta:gamma signalling through CDC42 / Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits / Glucagon-type ligand receptors / G alpha (i) signalling events / G alpha (12/13) signalling events / G beta:gamma signalling through BTK / ADP signalling through P2Y purinoceptor 12 / Adrenaline,noradrenaline inhibits insulin secretion / alkylglycerophosphoethanolamine phosphodiesterase activity / Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding / Thrombin signalling through proteinase activated receptors (PARs) / Ca2+ pathway / Extra-nuclear estrogen signaling / G alpha (z) signalling events / G alpha (s) signalling events / G alpha (q) signalling events / photoreceptor outer segment membrane / G alpha (i) signalling events / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / spectrin binding / Vasopressin regulates renal water homeostasis via Aquaporins / response to starvation / exocytosis / peptide hormone binding / photoreceptor outer segment / cardiac muscle cell apoptotic process / cellular response to glucagon stimulus / hormone-mediated signaling pathway / cellular response to starvation / photoreceptor inner segment / response to nutrient / guanyl-nucleotide exchange factor activity / generation of precursor metabolites and energy / adenylate cyclase-modulating G protein-coupled receptor signaling pathway / adenylate cyclase-activating G protein-coupled receptor signaling pathway / Glucagon signaling in metabolic regulation / regulation of blood pressure / Glucagon-type ligand receptors / cellular response to catecholamine stimulus / sensory perception of taste / adenylate cyclase-activating dopamine receptor signaling pathway / cellular response to prostaglandin E stimulus / G-protein beta-subunit binding / heterotrimeric G-protein complex / signaling receptor complex adaptor activity / GTPase binding / glucose homeostasis / retina development in camera-type eye / phospholipase C-activating G protein-coupled receptor signaling pathway / positive regulation of cytosolic calcium ion concentration / cellular response to hypoxia / cell body / G alpha (s) signalling events / G alpha (q) signalling events / cell population proliferation / cell surface receptor signaling pathway / endosome / G protein-coupled receptor signaling pathway / GTPase activity / dendrite / synapse / protein-containing complex binding / positive regulation of gene expression / membrane / plasma membrane / cytoplasm
Similarity search - Function
GPCR, family 2, glucagon receptor / GPCR, family 2, glucagon-like peptide-1/glucagon receptor / G-protein coupled receptors family 2 signature 1. / : / GPCR, family 2, extracellular hormone receptor domain / G-protein coupled receptors family 2 profile 1. / Domain present in hormone receptors / Hormone receptor domain / GPCR family 2, extracellular hormone receptor domain superfamily / G-protein coupled receptors family 2 signature 2. ...GPCR, family 2, glucagon receptor / GPCR, family 2, glucagon-like peptide-1/glucagon receptor / G-protein coupled receptors family 2 signature 1. / : / GPCR, family 2, extracellular hormone receptor domain / G-protein coupled receptors family 2 profile 1. / Domain present in hormone receptors / Hormone receptor domain / GPCR family 2, extracellular hormone receptor domain superfamily / G-protein coupled receptors family 2 signature 2. / GPCR, family 2, secretin-like, conserved site / GPCR, family 2, secretin-like / 7 transmembrane receptor (Secretin family) / GPCR, family 2-like / G-protein coupled receptors family 2 profile 2. / G-protein, gamma subunit / G-protein gamma subunit domain profile. / G-protein gamma-like domain / G-protein gamma-like domain superfamily / GGL domain / G protein gamma subunit-like motifs / GGL domain / Guanine nucleotide-binding protein, beta subunit / G-protein, beta subunit / G-protein beta WD-40 repeat / WD40 repeat, conserved site / Trp-Asp (WD) repeats signature. / Trp-Asp (WD) repeats profile. / Trp-Asp (WD) repeats circular profile. / WD domain, G-beta repeat / WD40 repeats / WD40 repeat / WD40-repeat-containing domain superfamily / WD40/YVTN repeat-like-containing domain superfamily
Similarity search - Domain/homology
Glucagon receptor / Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 / Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2
Similarity search - Component
Biological speciesHomo sapiens (human)
Rattus norvegicus (Norway rat)
Bos taurus (cattle)
synthetic construct (others)
Spodoptera frugiperda (fall armyworm)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.71 Å
AuthorsCong, Z.T. / Zhao, F.H. / Li, Y. / Luo, G. / Zhou, Q.T. / Yang, D.H. / Wang, M.W.
Funding support China, 7items
OrganizationGrant numberCountry
National Natural Science Foundation of China (NSFC)81872915 China
National Natural Science Foundation of China (NSFC)82073904 China
National Natural Science Foundation of China (NSFC)32071203 China
National Natural Science Foundation of China (NSFC)81922071 China
National Natural Science Foundation of China (NSFC)81773792 China
National Natural Science Foundation of China (NSFC)81973373 China
National Natural Science Foundation of China (NSFC)21704064 China
CitationJournal: Cell Discov / Year: 2024
Title: Molecular features of the ligand-free GLP-1R, GCGR and GIPR in complex with G proteins.
Authors: Zhaotong Cong / Fenghui Zhao / Yang Li / Gan Luo / Yiting Mai / Xianyue Chen / Yanyan Chen / Shi Lin / Xiaoqing Cai / Qingtong Zhou / Dehua Yang / Ming-Wei Wang /
Abstract: Class B1 G protein-coupled receptors (GPCRs) are important regulators of many physiological functions such as glucose homeostasis, which is mainly mediated by three peptide hormones, i.e., glucagon- ...Class B1 G protein-coupled receptors (GPCRs) are important regulators of many physiological functions such as glucose homeostasis, which is mainly mediated by three peptide hormones, i.e., glucagon-like peptide-1 (GLP-1), glucagon (GCG), and glucose-dependent insulinotropic polypeptide (GIP). They trigger a cascade of signaling events leading to the formation of an active agonist-receptor-G protein complex. However, intracellular signal transducers can also activate the receptor independent of extracellular stimuli, suggesting an intrinsic role of G proteins in this process. Here, we report cryo-electron microscopy structures of the human GLP-1 receptor (GLP-1R), GCG receptor (GCGR), and GIP receptor (GIPR) in complex with G proteins without the presence of cognate ligands. These ligand-free complexes share a similar intracellular architecture to those bound by endogenous peptides, in which, the G protein alone directly opens the intracellular binding cavity and rewires the extracellular orthosteric pocket to stabilize the receptor in a state unseen before. While the peptide-binding site is partially occupied by the inward folded transmembrane helix 6 (TM6)-extracellular loop 3 (ECL3) juncture of GIPR or a segment of GCGR ECL2, the extracellular portion of GLP-1R adopts a conformation close to the active state. Our findings offer valuable insights into the distinct activation mechanisms of these three important receptors. It is possible that in the absence of a ligand, the intracellular half of transmembrane domain is mobilized with the help of G protein, which in turn rearranges the extracellular half to form a transitional conformation, facilitating the entry of the peptide N-terminus.
History
DepositionSep 20, 2023Deposition site: PDBJ / Processing site: PDBC
Revision 1.0Mar 6, 2024Provider: repository / Type: Initial release
Revision 1.1Oct 23, 2024Group: Data collection / Structure summary
Category: em_admin / pdbx_entry_details / pdbx_modification_feature
Item: _em_admin.last_update

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Guanine nucleotide-binding protein G(s) subunit alpha isoforms short
B: Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1
G: Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2
N: Nanobody-35
R: Glucagon receptor
E: PRO-PRO-PRO-PRO-PHE-SER-ASN-LEU-VAL-MET-ASP-ASP-LEU-LYS-ASN-LYS-LYS


Theoretical massNumber of molelcules
Total (without water)153,9806
Polymers153,9806
Non-polymers00
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: electron microscopy, not applicable
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

-
Guanine nucleotide-binding protein ... , 3 types, 3 molecules ABG

#1: Protein Guanine nucleotide-binding protein G(s) subunit alpha isoforms short


Mass: 41793.418 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Spodoptera frugiperda (fall armyworm)
#2: Protein Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 / Transducin beta chain 1


Mass: 40226.992 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Rattus norvegicus (Norway rat) / Gene: Gnb1 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P54311
#3: Protein Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2 / G gamma-I


Mass: 7861.143 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Bos taurus (cattle) / Gene: GNG2 / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P63212

-
Antibody / Protein / Protein/peptide , 3 types, 3 molecules NRE

#4: Antibody Nanobody-35


Mass: 15343.019 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) synthetic construct (others) / Production host: Escherichia coli (E. coli)
#5: Protein Glucagon receptor / GL-R


Mass: 46812.441 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: GCGR / Production host: Spodoptera frugiperda (fall armyworm) / References: UniProt: P47871
#6: Protein/peptide PRO-PRO-PRO-PRO-PHE-SER-ASN-LEU-VAL-MET-ASP-ASP-LEU-LYS-ASN-LYS-LYS


Mass: 1943.289 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Spodoptera frugiperda (fall armyworm) / Production host: Spodoptera frugiperda (fall armyworm)

-
Details

Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Cryo-EM structure of the human glucagon like peptide 1 receptor in complex with tirzepatide and G protein
Type: COMPLEX / Entity ID: all / Source: MULTIPLE SOURCES
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Spodoptera frugiperda (fall armyworm)
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: OTHER / Accelerating voltage: 300 kV / Illumination mode: OTHER
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2200 nm / Nominal defocus min: 1200 nm
Image recordingElectron dose: 80 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 2.71 Å / Resolution method: OTHER / Num. of particles: 1232018 / Symmetry type: POINT
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0028208
ELECTRON MICROSCOPYf_angle_d0.50811124
ELECTRON MICROSCOPYf_dihedral_angle_d12.6741124
ELECTRON MICROSCOPYf_chiral_restr0.0411262
ELECTRON MICROSCOPYf_plane_restr0.0031416

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more