regulation of proton transport / pH reduction / potassium:proton exchanging ATPase complex / P-type potassium:proton transporter activity / Ion transport by P-type ATPases / sodium:potassium-exchanging ATPase complex / sodium ion export across plasma membrane / intracellular potassium ion homeostasis / intracellular sodium ion homeostasis / potassium ion import across plasma membrane ...regulation of proton transport / pH reduction / potassium:proton exchanging ATPase complex / P-type potassium:proton transporter activity / Ion transport by P-type ATPases / sodium:potassium-exchanging ATPase complex / sodium ion export across plasma membrane / intracellular potassium ion homeostasis / intracellular sodium ion homeostasis / potassium ion import across plasma membrane / ATPase activator activity / potassium ion transmembrane transport / proton transmembrane transport / cell adhesion / response to xenobiotic stimulus / apical plasma membrane / magnesium ion binding / ATP hydrolysis activity / ATP binding 類似検索 - 分子機能
ジャーナル: Commun Biol / 年: 2023 タイトル: Deep learning driven de novo drug design based on gastric proton pump structures. 著者: Kazuhiro Abe / Mami Ozako / Miki Inukai / Yoe Matsuyuki / Shinnosuke Kitayama / Chisato Kanai / Chiaki Nagai / Chai C Gopalasingam / Christoph Gerle / Hideki Shigematsu / Nariyoshi Umekubo / ...著者: Kazuhiro Abe / Mami Ozako / Miki Inukai / Yoe Matsuyuki / Shinnosuke Kitayama / Chisato Kanai / Chiaki Nagai / Chai C Gopalasingam / Christoph Gerle / Hideki Shigematsu / Nariyoshi Umekubo / Satoshi Yokoshima / Atsushi Yoshimori / 要旨: Existing drugs often suffer in their effectiveness due to detrimental side effects, low binding affinity or pharmacokinetic problems. This may be overcome by the development of distinct compounds. ...Existing drugs often suffer in their effectiveness due to detrimental side effects, low binding affinity or pharmacokinetic problems. This may be overcome by the development of distinct compounds. Here, we exploit the rich structural basis of drug-bound gastric proton pump to develop compounds with strong inhibitory potency, employing a combinatorial approach utilizing deep generative models for de novo drug design with organic synthesis and cryo-EM structural analysis. Candidate compounds that satisfy pharmacophores defined in the drug-bound proton pump structures, were designed in silico utilizing our deep generative models, a workflow termed Deep Quartet. Several candidates were synthesized and screened according to their inhibition potencies in vitro, and their binding poses were in turn identified by cryo-EM. Structures reaching up to 2.10 Å resolution allowed us to evaluate and re-design compound structures, heralding the most potent compound in this study, DQ-18 (N-methyl-4-((2-(benzyloxy)-5-chlorobenzyl)oxy)benzylamine), which shows a K value of 47.6 nM. Further high-resolution cryo-EM analysis at 2.08 Å resolution unambiguously determined the DQ-18 binding pose. Our integrated approach offers a framework for structure-based de novo drug development based on the desired pharmacophores within the protein structure.