[English] 日本語

- PDB-8jip: Cryo-EM structure of the GLP-1R/GCGR dual agonist MEDI0382-bound ... -
+
Open data
-
Basic information
Entry | Database: PDB / ID: 8jip | |||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of the GLP-1R/GCGR dual agonist MEDI0382-bound human GLP-1R-Gs complex | |||||||||||||||||||||||||||
![]() |
| |||||||||||||||||||||||||||
![]() | STRUCTURAL PROTEIN / G protein-coupled receptor / ligand recognition / receptor activation / unimolecular dual agonist | |||||||||||||||||||||||||||
Function / homology | ![]() glucagon-like peptide 1 receptor activity / glucagon receptor activity / hormone secretion / positive regulation of blood pressure / G-protein activation / Activation of the phototransduction cascade / Glucagon-type ligand receptors / Thromboxane signalling through TP receptor / Sensory perception of sweet, bitter, and umami (glutamate) taste / G beta:gamma signalling through PI3Kgamma ...glucagon-like peptide 1 receptor activity / glucagon receptor activity / hormone secretion / positive regulation of blood pressure / G-protein activation / Activation of the phototransduction cascade / Glucagon-type ligand receptors / Thromboxane signalling through TP receptor / Sensory perception of sweet, bitter, and umami (glutamate) taste / G beta:gamma signalling through PI3Kgamma / G beta:gamma signalling through CDC42 / Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding / post-translational protein targeting to membrane, translocation / Activation of G protein gated Potassium channels / Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits / Ca2+ pathway / G alpha (z) signalling events / High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR in endothelial cells / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / Vasopressin regulates renal water homeostasis via Aquaporins / Adrenaline,noradrenaline inhibits insulin secretion / ADP signalling through P2Y purinoceptor 12 / G alpha (q) signalling events / G alpha (i) signalling events / Activation of G protein gated Potassium channels / G-protein activation / G beta:gamma signalling through PI3Kgamma / Prostacyclin signalling through prostacyclin receptor / G beta:gamma signalling through PLC beta / ADP signalling through P2Y purinoceptor 1 / Thromboxane signalling through TP receptor / Presynaptic function of Kainate receptors / G beta:gamma signalling through CDC42 / Inhibition of voltage gated Ca2+ channels via Gbeta/gamma subunits / Thrombin signalling through proteinase activated receptors (PARs) / G alpha (12/13) signalling events / Glucagon-type ligand receptors / G beta:gamma signalling through BTK / ADP signalling through P2Y purinoceptor 12 / Adrenaline,noradrenaline inhibits insulin secretion / Cooperation of PDCL (PhLP1) and TRiC/CCT in G-protein beta folding / Ca2+ pathway / Thrombin signalling through proteinase activated receptors (PARs) / G alpha (z) signalling events / Extra-nuclear estrogen signaling / G alpha (s) signalling events / photoreceptor outer segment membrane / G alpha (q) signalling events / G alpha (i) signalling events / spectrin binding / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / response to psychosocial stress / High laminar flow shear stress activates signaling by PIEZO1 and PECAM1:CDH5:KDR in endothelial cells / Vasopressin regulates renal water homeostasis via Aquaporins / regulation of heart contraction / alkylglycerophosphoethanolamine phosphodiesterase activity / peptide hormone binding / photoreceptor outer segment / activation of adenylate cyclase activity / negative regulation of blood pressure / photoreceptor inner segment / cardiac muscle cell apoptotic process / adenylate cyclase-activating G protein-coupled receptor signaling pathway / Glucagon-type ligand receptors / Glucagon-like Peptide-1 (GLP1) regulates insulin secretion / cellular response to catecholamine stimulus / adenylate cyclase-activating dopamine receptor signaling pathway / transmembrane signaling receptor activity / cellular response to prostaglandin E stimulus / G-protein beta-subunit binding / heterotrimeric G-protein complex / sensory perception of taste / signaling receptor complex adaptor activity / cell body / GTPase binding / positive regulation of cytosolic calcium ion concentration / retina development in camera-type eye / G alpha (s) signalling events / phospholipase C-activating G protein-coupled receptor signaling pathway / cellular response to hypoxia / learning or memory / cell population proliferation / cell surface receptor signaling pathway / G protein-coupled receptor signaling pathway / GTPase activity / synapse / dendrite / protein-containing complex binding / membrane / plasma membrane / cytoplasm Similarity search - Function | |||||||||||||||||||||||||||
Biological species | ![]() ![]() ![]() ![]() ![]() ![]() ![]() synthetic construct (others) | |||||||||||||||||||||||||||
Method | ELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 2.85 Å | |||||||||||||||||||||||||||
![]() | Yang, L. / Zhou, Q.T. / Dai, A.T. / Zhao, F.H. / Chang, R.L. / Ying, T.L. / Wu, B.L. / Yang, D.H. / Wang, M.W. / Cong, Z.T. | |||||||||||||||||||||||||||
Funding support | ![]()
| |||||||||||||||||||||||||||
![]() | ![]() Title: Structural analysis of the dual agonism at GLP-1R and GCGR. Authors: Yang Li / Qingtong Zhou / Antao Dai / Fenghui Zhao / Rulue Chang / Tianlei Ying / Beili Wu / Dehua Yang / Ming-Wei Wang / Zhaotong Cong / ![]() ![]() Abstract: Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They ...Glucagon-like peptide-1 receptor (GLP-1R) and glucagon receptor (GCGR), two members of class B1 G protein-coupled receptors, play important roles in glucose homeostasis and energy metabolism. They share a high degree of sequence homology but have different functionalities. Unimolecular dual agonists of both receptors developed recently displayed better clinical efficacies than that of monotherapy. To study the underlying molecular mechanisms, we determined high-resolution cryo-electron microscopy structures of GLP-1R or GCGR in complex with heterotrimeric G protein and three GLP-1R/GCGR dual agonists including peptide 15, MEDI0382 (cotadutide) and SAR425899 with variable activating profiles at GLP-1R versus GCGR. Compared with related structures reported previously and supported by our published pharmacological data, key residues responsible for ligand recognition and dual agonism were identified. Analyses of peptide conformational features revealed a difference in side chain orientations within the first three residues, indicating that distinct engagements in the deep binding pocket are required to achieve receptor selectivity. The middle region recognizes extracellular loop 1 (ECL1), ECL2, and the top of transmembrane helix 1 (TM1) resulting in specific conformational changes of both ligand and receptor, especially the dual agonists reshaped ECL1 conformation of GLP-1R relative to that of GCGR, suggesting an important role of ECL1 interaction in executing dual agonism. Structural investigation of lipid modification showed a better interaction between lipid moiety of MEDI0382 and TM1-TM2 cleft, in line with its increased potency at GCGR than SAR425899. Together, the results provide insightful information for the design and development of improved therapeutics targeting these two receptors simultaneously. | |||||||||||||||||||||||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 227.4 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 175 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 36323MC ![]() 8jiqC ![]() 8jirC ![]() 8jisC ![]() 8jitC ![]() 8jiuC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
-Guanine nucleotide-binding protein ... , 3 types, 3 molecules ABG
#2: Protein | Mass: 41907.516 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Details: There is no an appropriate UniProt/GenBank entry for entity 2 because the protein sequence (P63092) was modified. Source: (gene. exp.) ![]() ![]() ![]() |
---|---|
#4: Protein | Mass: 37915.496 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() ![]() |
#5: Protein | Mass: 7729.947 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() ![]() |
-Protein / Protein/peptide / Antibody / Non-polymers , 4 types, 4 molecules RPN

#1: Protein | Mass: 50860.801 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|---|
#3: Protein/peptide | Mass: 3278.431 Da / Num. of mol.: 1 / Source method: obtained synthetically / Source: (synth.) synthetic construct (others) |
#6: Antibody | Mass: 15343.019 Da / Num. of mol.: 1 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() ![]() |
#7: Chemical | ChemComp-D6M / |
-Details
Has ligand of interest | Y |
---|---|
Has protein modification | Y |
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction |
-
Sample preparation
Component | Name: Cryo-EM structure of the GLP-1R/GCGR dual agonist MEDI0382-bound human GLP-1R-Gs complex Type: COMPLEX / Entity ID: #1-#6 / Source: MULTIPLE SOURCES |
---|---|
Source (natural) | Organism: ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 7.4 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: OTHER / Accelerating voltage: 300 kV / Illumination mode: OTHER |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2200 nm / Nominal defocus min: 1200 nm |
Image recording | Electron dose: 80 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-
Processing
CTF correction | Type: PHASE FLIPPING AND AMPLITUDE CORRECTION |
---|---|
3D reconstruction | Resolution: 2.85 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 796065 / Symmetry type: POINT |