+
Open data
-
Basic information
Entry | Database: PDB / ID: 8jey | ||||||
---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of alpha-synuclein pS87 fibril | ||||||
![]() | Alpha-synuclein | ||||||
![]() | PROTEIN FIBRIL / amyloid | ||||||
Function / homology | ![]() negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / response to desipramine / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber ...negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / response to desipramine / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber / mitochondrial membrane organization / regulation of synaptic vesicle recycling / negative regulation of chaperone-mediated autophagy / regulation of reactive oxygen species biosynthetic process / negative regulation of platelet-derived growth factor receptor signaling pathway / positive regulation of protein localization to cell periphery / negative regulation of exocytosis / regulation of glutamate secretion / SNARE complex assembly / positive regulation of neurotransmitter secretion / dopamine biosynthetic process / response to iron(II) ion / regulation of norepinephrine uptake / negative regulation of dopamine metabolic process / regulation of locomotion / mitochondrial ATP synthesis coupled electron transport / regulation of macrophage activation / positive regulation of inositol phosphate biosynthetic process / synaptic vesicle priming / transporter regulator activity / negative regulation of microtubule polymerization / synaptic vesicle transport / positive regulation of receptor recycling / dopamine uptake involved in synaptic transmission / protein kinase inhibitor activity / dynein complex binding / regulation of dopamine secretion / negative regulation of thrombin-activated receptor signaling pathway / nuclear outer membrane / cuprous ion binding / positive regulation of exocytosis / synaptic vesicle exocytosis / response to magnesium ion / positive regulation of endocytosis / kinesin binding / synaptic vesicle endocytosis / enzyme inhibitor activity / cysteine-type endopeptidase inhibitor activity / negative regulation of serotonin uptake / regulation of presynapse assembly / response to type II interferon / alpha-tubulin binding / beta-tubulin binding / phospholipase binding / behavioral response to cocaine / supramolecular fiber organization / cellular response to copper ion / phospholipid metabolic process / cellular response to fibroblast growth factor stimulus / inclusion body / axon terminus / cellular response to epinephrine stimulus / Hsp70 protein binding / response to interleukin-1 / regulation of microtubule cytoskeleton organization / SNARE binding / positive regulation of release of sequestered calcium ion into cytosol / adult locomotory behavior / excitatory postsynaptic potential / phosphoprotein binding / protein tetramerization / fatty acid metabolic process / microglial cell activation / synapse organization / regulation of long-term neuronal synaptic plasticity / ferrous iron binding / protein destabilization / PKR-mediated signaling / phospholipid binding / receptor internalization / tau protein binding / long-term synaptic potentiation / terminal bouton / positive regulation of inflammatory response / synaptic vesicle membrane / actin cytoskeleton / actin binding / growth cone / cellular response to oxidative stress / cell cortex / neuron apoptotic process / microtubule binding / response to lipopolysaccharide / chemical synaptic transmission / molecular adaptor activity / amyloid fibril formation / histone binding / negative regulation of neuron apoptotic process / mitochondrial outer membrane / lysosome Similarity search - Function | ||||||
Biological species | ![]() | ||||||
Method | ELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 2.6 Å | ||||||
![]() | Xia, W.C. / Sun, Y.P. / Liu, C. | ||||||
Funding support | 1items
| ||||||
![]() | ![]() Title: Phosphorylation and O-GlcNAcylation at the same α-synuclein site generate distinct fibril structures. Authors: Jinjian Hu / Wencheng Xia / Shuyi Zeng / Yeh-Jun Lim / Youqi Tao / Yunpeng Sun / Lang Zhao / Haosen Wang / Weidong Le / Dan Li / Shengnan Zhang / Cong Liu / Yan-Mei Li / ![]() Abstract: α-Synuclein forms amyloid fibrils that are critical in the progression of Parkinson's disease and serves as the pathological hallmark of this condition. Different posttranslational modifications ...α-Synuclein forms amyloid fibrils that are critical in the progression of Parkinson's disease and serves as the pathological hallmark of this condition. Different posttranslational modifications have been identified at multiple sites of α-synuclein, influencing its conformation, aggregation and function. Here, we investigate how disease-related phosphorylation and O-GlcNAcylation at the same α-synuclein site (S87) affect fibril structure and neuropathology. Using semi-synthesis, we obtained homogenous α-synuclein monomer with site-specific phosphorylation (pS87) and O-GlcNAcylation (gS87) at S87, respectively. Cryo-EM revealed that pS87 and gS87 α-synuclein form two distinct fibril structures. The GlcNAc situated at S87 establishes interactions with K80 and E61, inducing a unique iron-like fold with the GlcNAc molecule on the iron handle. Phosphorylation at the same site prevents a lengthy C-terminal region including residues 73 to 140 from incorporating into the fibril core due to electrostatic repulsion. Instead, the N-terminal half of the fibril (1-72) takes on an arch-like fibril structure. We further show that both pS87 and gS87 α-synuclein fibrils display reduced neurotoxicity and propagation activity compared with unmodified α-synuclein fibrils. Our findings demonstrate that different posttranslational modifications at the same site can produce distinct fibril structures, which emphasizes link between posttranslational modifications and amyloid fibril formation and pathology. | ||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 80 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 59.5 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Summary document | ![]() | 1 MB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 1 MB | Display | |
Data in XML | ![]() | 29.9 KB | Display | |
Data in CIF | ![]() | 41.6 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 36203MC ![]() 8jexC M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 14476.108 Da / Num. of mol.: 6 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: FILAMENT / 3D reconstruction method: helical reconstruction |
-
Sample preparation
Component | Name: Cryo-EM structure of alpha-synuclein pS87 fibril / Type: ORGANELLE OR CELLULAR COMPONENT / Entity ID: all / Source: NATURAL |
---|---|
Molecular weight | Experimental value: NO |
Source (natural) | Organism: ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 7.4 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm |
Image recording | Electron dose: 55 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-
Processing
CTF correction | Type: NONE | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Helical symmerty | Angular rotation/subunit: -179.72 ° / Axial rise/subunit: 2.41 Å / Axial symmetry: C1 | ||||||||||||||||||||||||
3D reconstruction | Resolution: 2.6 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 61047 / Symmetry type: HELICAL | ||||||||||||||||||||||||
Refine LS restraints |
|