[English] 日本語
Yorodumi
- PDB-8g7u: Cryo-EM structure of Riplet:RIG-I:dsRNA complex (end-semi-closed end) -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8g7u
TitleCryo-EM structure of Riplet:RIG-I:dsRNA complex (end-semi-closed end)
Components
  • Antiviral innate immune response receptor RIG-I
  • E3 ubiquitin-protein ligase RNF135
  • p3dsRNA24a
  • p3dsRNA24b
KeywordsTransferase/Hydrolase/RNA / ribonucleoprotein complex / RNA sensor / RIG-I like receptor / Ubiquitination / E3 ligase / TRIM family / ANTIVIRAL PROTEIN / Transferase-Hydrolase-RNA complex
Function / homology
Function and homology information


RIG-I binding / free ubiquitin chain polymerization / regulation of type III interferon production / RIG-I signaling pathway / positive regulation of myeloid dendritic cell cytokine production / OAS antiviral response / detection of virus / NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 / positive regulation of response to cytokine stimulus / positive regulation of granulocyte macrophage colony-stimulating factor production ...RIG-I binding / free ubiquitin chain polymerization / regulation of type III interferon production / RIG-I signaling pathway / positive regulation of myeloid dendritic cell cytokine production / OAS antiviral response / detection of virus / NF-kB activation through FADD/RIP-1 pathway mediated by caspase-8 and -10 / positive regulation of response to cytokine stimulus / positive regulation of granulocyte macrophage colony-stimulating factor production / pattern recognition receptor activity / TRAF6 mediated IRF7 activation / cytoplasmic pattern recognition receptor signaling pathway / cellular response to exogenous dsRNA / regulation of innate immune response / RSV-host interactions / response to exogenous dsRNA / positive regulation of interferon-alpha production / TRAF6 mediated NF-kB activation / protein K63-linked ubiquitination / bicellular tight junction / ribonucleoprotein complex binding / positive regulation of defense response to virus by host / antiviral innate immune response / positive regulation of interferon-beta production / regulation of cell migration / positive regulation of interleukin-8 production / Negative regulators of DDX58/IFIH1 signaling / response to virus / RING-type E3 ubiquitin transferase / DDX58/IFIH1-mediated induction of interferon-alpha/beta / protein homooligomerization / Evasion by RSV of host interferon responses / ISG15 antiviral mechanism / ruffle membrane / positive regulation of interleukin-6 production / cytoplasmic stress granule / protein polyubiquitination / ubiquitin-protein transferase activity / SARS-CoV-1 activates/modulates innate immune responses / positive regulation of tumor necrosis factor production / ubiquitin protein ligase activity / double-stranded RNA binding / Ovarian tumor domain proteases / actin cytoskeleton / TRAF3-dependent IRF activation pathway / gene expression / double-stranded DNA binding / defense response to virus / RNA helicase activity / single-stranded RNA binding / Ub-specific processing proteases / RNA helicase / protein ubiquitination / ribonucleoprotein complex / innate immune response / ubiquitin protein ligase binding / positive regulation of gene expression / GTP binding / SARS-CoV-2 activates/modulates innate and adaptive immune responses / positive regulation of transcription by RNA polymerase II / ATP hydrolysis activity / zinc ion binding / ATP binding / identical protein binding / metal ion binding / cytosol / cytoplasm
Similarity search - Function
RNF135, PRY/SPRY domain / : / zinc finger of C3HC4-type, RING / RIG-I, CARD domain repeat 2 / SPRY-associated / PRY / RIG-I-like receptor, C-terminal / RIG-I receptor C-terminal domain / RIG-I-like receptor, C-terminal regulatory domain / RIG-I-like receptor, C-terminal domain superfamily ...RNF135, PRY/SPRY domain / : / zinc finger of C3HC4-type, RING / RIG-I, CARD domain repeat 2 / SPRY-associated / PRY / RIG-I-like receptor, C-terminal / RIG-I receptor C-terminal domain / RIG-I-like receptor, C-terminal regulatory domain / RIG-I-like receptor, C-terminal domain superfamily / : / C-terminal domain of RIG-I / RIG-I-like receptor (RLR) C-terminal regulatory (CTR) domain profile. / Butyrophylin-like, SPRY domain / Caspase recruitment domain / Caspase recruitment domain / SPRY domain / B30.2/SPRY domain / B30.2/SPRY domain profile. / B30.2/SPRY domain superfamily / Domain in SPla and the RYanodine Receptor. / SPRY domain / Zinc finger, RING-type, conserved site / Zinc finger RING-type signature. / Death-like domain superfamily / DEAD/DEAH box helicase domain / DEAD/DEAH box helicase / Ring finger / Helicase conserved C-terminal domain / Zinc finger RING-type profile. / Zinc finger, RING-type / helicase superfamily c-terminal domain / Concanavalin A-like lectin/glucanase domain superfamily / Superfamilies 1 and 2 helicase C-terminal domain profile. / Superfamilies 1 and 2 helicase ATP-binding type-1 domain profile. / DEAD-like helicases superfamily / Helicase, C-terminal / Helicase superfamily 1/2, ATP-binding domain / Zinc finger, RING/FYVE/PHD-type / P-loop containing nucleoside triphosphate hydrolase
Similarity search - Domain/homology
RNA / RNA (> 10) / Antiviral innate immune response receptor RIG-I / E3 ubiquitin-protein ligase RNF135
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 4 Å
AuthorsWang, W. / Pyle, A.M.
Funding support United States, 2items
OrganizationGrant numberCountry
Howard Hughes Medical Institute (HHMI) United States
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)R01AI131518 United States
CitationJournal: Nat Commun / Year: 2023
Title: The E3 ligase Riplet promotes RIG-I signaling independent of RIG-I oligomerization.
Authors: Wenshuai Wang / Benjamin Götte / Rong Guo / Anna Marie Pyle /
Abstract: RIG-I is an essential innate immune receptor that responds to infection by RNA viruses. The RIG-I signaling cascade is mediated by a series of post-translational modifications, the most important of ...RIG-I is an essential innate immune receptor that responds to infection by RNA viruses. The RIG-I signaling cascade is mediated by a series of post-translational modifications, the most important of which is ubiquitination of the RIG-I Caspase Recruitment Domains (CARDs) by E3 ligase Riplet. This is required for interaction between RIG-I and its downstream adapter protein MAVS, but the mechanism of action remains unclear. Here we show that Riplet is required for RIG-I signaling in the presence of both short and long dsRNAs, establishing that Riplet activation does not depend upon RIG-I filament formation on long dsRNAs. Likewise, quantitative Riplet-RIG-I affinity measurements establish that Riplet interacts with RIG-I regardless of whether the receptor is bound to RNA. To understand this, we solved high-resolution cryo-EM structures of RIG-I/RNA/Riplet complexes, revealing molecular interfaces that control Riplet-mediated activation and enabling the formulation of a unified model for the role of Riplet in signaling.
History
DepositionFeb 17, 2023Deposition site: RCSB / Processing site: RCSB
Revision 1.0Nov 15, 2023Provider: repository / Type: Initial release
Revision 1.1May 29, 2024Group: Database references / Structure summary / Category: citation / citation_author / struct
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year / _struct.title
Revision 1.2Oct 23, 2024Group: Data collection / Structure summary
Category: em_admin / pdbx_entry_details / pdbx_modification_feature
Item: _em_admin.last_update / _pdbx_entry_details.has_protein_modification

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Antiviral innate immune response receptor RIG-I
B: E3 ubiquitin-protein ligase RNF135
C: Antiviral innate immune response receptor RIG-I
D: E3 ubiquitin-protein ligase RNF135
X: p3dsRNA24a
Y: p3dsRNA24b
hetero molecules


Theoretical massNumber of molelcules
Total (without water)325,1798
Polymers325,0486
Non-polymers1312
Water00
1


  • Idetical with deposited unit
  • defined by author
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_5551

-
Components

#1: Protein Antiviral innate immune response receptor RIG-I / DEAD box protein 58 / Probable ATP-dependent RNA helicase DDX58 / RIG-I-like receptor 1 / RLR-1 / ...DEAD box protein 58 / Probable ATP-dependent RNA helicase DDX58 / RIG-I-like receptor 1 / RLR-1 / Retinoic acid-inducible gene 1 protein / RIG-1 / Retinoic acid-inducible gene I protein / RIG-I


Mass: 106740.555 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: DDX58 / Production host: Escherichia coli (E. coli) / References: UniProt: O95786, RNA helicase
#2: Protein E3 ubiquitin-protein ligase RNF135 / RIG-I E3 ubiquitin ligase / REUL / RING finger protein 135 / RING finger protein leading to RIG-I ...RIG-I E3 ubiquitin ligase / REUL / RING finger protein 135 / RING finger protein leading to RIG-I activation / Riplet / RING-type E3 ubiquitin transferase RNF135


Mass: 47946.305 Da / Num. of mol.: 2
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: RNF135, L13 / Production host: Escherichia coli (E. coli)
References: UniProt: Q8IUD6, RING-type E3 ubiquitin transferase
#3: RNA chain p3dsRNA24a


Mass: 7885.581 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Escherichia coli (E. coli)
#4: RNA chain p3dsRNA24b


Mass: 7788.551 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Escherichia coli (E. coli)
#5: Chemical ChemComp-ZN / ZINC ION


Mass: 65.409 Da / Num. of mol.: 2 / Source method: obtained synthetically / Formula: Zn
Has ligand of interestY
Has protein modificationY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

ComponentName: Complex of RNP end 2 / Type: COMPLEX / Entity ID: #1-#4 / Source: RECOMBINANT
Source (natural)Organism: Homo sapiens (human)
Source (recombinant)Organism: Escherichia coli (E. coli)
Buffer solutionpH: 7.4
SpecimenEmbedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
VitrificationCryogen name: ETHANE

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: FLOOD BEAM
Electron lensMode: BRIGHT FIELD / Nominal defocus max: 2500 nm / Nominal defocus min: 1000 nm
Image recordingElectron dose: 60 e/Å2 / Film or detector model: GATAN K3 (6k x 4k)

-
Processing

SoftwareName: PHENIX / Version: 1.17.1_3660: / Classification: refinement
CTF correctionType: NONE
3D reconstructionResolution: 4 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 68414 / Symmetry type: POINT
Atomic model buildingB value: 131.389 / Space: REAL
Atomic model buildingPDB-ID: 8G7T
Accession code: 8G7T / Source name: PDB / Type: experimental model
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.00714639
ELECTRON MICROSCOPYf_angle_d0.94220007
ELECTRON MICROSCOPYf_dihedral_angle_d17.8362298
ELECTRON MICROSCOPYf_chiral_restr0.0562244
ELECTRON MICROSCOPYf_plane_restr0.0072361

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more