[English] 日本語
Yorodumi
- PDB-8exm: Crystal structure of PTP1B D181A/Q262A phosphatase domain with a ... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8exm
TitleCrystal structure of PTP1B D181A/Q262A phosphatase domain with a JAK3 activation loop phosphopeptide
Components
  • Tyrosine-protein kinase JAK3 activation loop peptide
  • Tyrosine-protein phosphatase non-receptor type 1
KeywordsSIGNALING PROTEIN / PTP1B / JAK/STAT / IRK
Function / homology
Function and homology information


negative regulation of dendritic cell cytokine production / negative regulation of FasL production / response to interleukin-9 / response to interleukin-2 / response to interleukin-15 / response to interleukin-4 / negative regulation of T-helper 1 cell differentiation / negative regulation of T cell activation / Interleukin-9 signaling / Interleukin-21 signaling ...negative regulation of dendritic cell cytokine production / negative regulation of FasL production / response to interleukin-9 / response to interleukin-2 / response to interleukin-15 / response to interleukin-4 / negative regulation of T-helper 1 cell differentiation / negative regulation of T cell activation / Interleukin-9 signaling / Interleukin-21 signaling / interleukin-9-mediated signaling pathway / interleukin-4-mediated signaling pathway / interleukin-2-mediated signaling pathway / regulation of T cell apoptotic process / negative regulation of interleukin-12 production / interleukin-15-mediated signaling pathway / tyrosine phosphorylation of STAT protein / negative regulation of thymocyte apoptotic process / Interleukin-15 signaling / Interleukin-2 signaling / regulation of receptor signaling pathway via JAK-STAT / growth hormone receptor binding / extrinsic component of plasma membrane / regulation of hepatocyte growth factor receptor signaling pathway / Signaling by ALK / PTK6 Down-Regulation / Interleukin-20 family signaling / peptidyl-tyrosine dephosphorylation involved in inactivation of protein kinase activity / positive regulation of receptor catabolic process / negative regulation of interleukin-10 production / insulin receptor recycling / enzyme-linked receptor protein signaling pathway / negative regulation of PERK-mediated unfolded protein response / negative regulation of vascular endothelial growth factor receptor signaling pathway / regulation of intracellular protein transport / IRE1-mediated unfolded protein response / T cell homeostasis / cytoplasmic side of endoplasmic reticulum membrane / platelet-derived growth factor receptor-beta signaling pathway / sorting endosome / mitochondrial crista / positive regulation of IRE1-mediated unfolded protein response / cell surface receptor signaling pathway via JAK-STAT / regulation of type I interferon-mediated signaling pathway / regulation of endocytosis / non-membrane spanning protein tyrosine phosphatase activity / positive regulation of protein tyrosine kinase activity / peptidyl-tyrosine dephosphorylation / Regulation of IFNA/IFNB signaling / regulation of signal transduction / cellular response to unfolded protein / growth hormone receptor signaling pathway via JAK-STAT / Interleukin receptor SHC signaling / negative regulation of endoplasmic reticulum stress-induced intrinsic apoptotic signaling pathway / negative regulation of signal transduction / Regulation of IFNG signaling / Growth hormone receptor signaling / MECP2 regulates neuronal receptors and channels / endoplasmic reticulum unfolded protein response / positive regulation of JUN kinase activity / extrinsic component of cytoplasmic side of plasma membrane / Insulin receptor recycling / negative regulation of insulin receptor signaling pathway / Interleukin-7 signaling / ephrin receptor binding / Integrin signaling / protein dephosphorylation / B cell differentiation / protein-tyrosine-phosphatase / negative regulation of MAP kinase activity / protein phosphatase 2A binding / protein tyrosine phosphatase activity / endosome lumen / non-specific protein-tyrosine kinase / non-membrane spanning protein tyrosine kinase activity / insulin receptor binding / Negative regulation of MET activity / negative regulation of ERK1 and ERK2 cascade / receptor tyrosine kinase binding / cytokine-mediated signaling pathway / peptidyl-tyrosine phosphorylation / insulin receptor signaling pathway / actin cytoskeleton organization / RAF/MAP kinase cascade / regulation of apoptotic process / protein phosphatase binding / protein tyrosine kinase activity / Interleukin-4 and Interleukin-13 signaling / adaptive immune response / Potential therapeutics for SARS / cell differentiation / early endosome / cytoskeleton / endosome / intracellular signal transduction / mitochondrial matrix / cadherin binding / protein phosphorylation / innate immune response / protein kinase binding
Similarity search - Function
Tyrosine-protein kinase, non-receptor Jak3 / Tyrosine-protein kinase, non-receptor Jak/Tyk2 / JAK, FERM F2 lobe domain / FERM F1 lobe ubiquitin-like domain / JAK1-3/TYK2, pleckstrin homology-like domain / Jak1 pleckstrin homology-like domain / FERM F2 acyl-CoA binding protein-like domain / FERM F1 ubiquitin-like domain / Protein-tyrosine phosphatase, non-receptor type-1/2 / FERM domain ...Tyrosine-protein kinase, non-receptor Jak3 / Tyrosine-protein kinase, non-receptor Jak/Tyk2 / JAK, FERM F2 lobe domain / FERM F1 lobe ubiquitin-like domain / JAK1-3/TYK2, pleckstrin homology-like domain / Jak1 pleckstrin homology-like domain / FERM F2 acyl-CoA binding protein-like domain / FERM F1 ubiquitin-like domain / Protein-tyrosine phosphatase, non-receptor type-1/2 / FERM domain / FERM domain profile. / Band 4.1 domain / Band 4.1 homologues / Protein tyrosine phosphatase, catalytic domain / PTP type protein phosphatase domain profile. / Protein-tyrosine phosphatase / Tyrosine-specific protein phosphatase, PTPase domain / Protein-tyrosine phosphatase, catalytic / Protein tyrosine phosphatase, catalytic domain motif / Tyrosine specific protein phosphatases active site. / Protein-tyrosine phosphatase, active site / Tyrosine-specific protein phosphatases domain / Tyrosine specific protein phosphatases domain profile. / Protein-tyrosine phosphatase-like / Src homology 2 domains / SH2 domain / SH2 domain superfamily / Tyrosine-protein kinase, catalytic domain / Tyrosine kinase, catalytic domain / Tyrosine protein kinases specific active-site signature. / PH-like domain superfamily / Tyrosine-protein kinase, active site / Protein tyrosine and serine/threonine kinase / Serine-threonine/tyrosine-protein kinase, catalytic domain / Protein kinase, ATP binding site / Protein kinases ATP-binding region signature. / Protein kinase domain profile. / Protein kinase domain / Protein kinase-like domain superfamily
Similarity search - Domain/homology
PHOSPHATE ION / Tyrosine-protein phosphatase non-receptor type 1 / Tyrosine-protein kinase JAK3
Similarity search - Component
Biological speciesHomo sapiens (human)
MethodX-RAY DIFFRACTION / SYNCHROTRON / MOLECULAR REPLACEMENT / Resolution: 2.349 Å
AuthorsMorris, R. / Kershaw, N.J. / Babon, J.J.
Funding support Australia, 1items
OrganizationGrant numberCountry
National Health and Medical Research Council (NHMRC, Australia) Australia
CitationJournal: Commun Biol / Year: 2023
Title: Structure guided studies of the interaction between PTP1B and JAK.
Authors: Morris, R. / Keating, N. / Tan, C. / Chen, H. / Laktyushin, A. / Saiyed, T. / Liau, N.P.D. / Nicola, N.A. / Tiganis, T. / Kershaw, N.J. / Babon, J.J.
History
DepositionOct 25, 2022Deposition site: RCSB / Processing site: RCSB
Revision 1.0Jul 5, 2023Provider: repository / Type: Initial release
Revision 1.1Oct 25, 2023Group: Data collection / Refinement description
Category: chem_comp_atom / chem_comp_bond / pdbx_initial_refinement_model

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
A: Tyrosine-protein phosphatase non-receptor type 1
D: Tyrosine-protein kinase JAK3 activation loop peptide
hetero molecules


Theoretical massNumber of molelcules
Total (without water)36,8584
Polymers36,6412
Non-polymers2172
Water1,54986
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1
Buried area1050 Å2
ΔGint-8 kcal/mol
Surface area13160 Å2
MethodPISA
Unit cell
Length a, b, c (Å)88.590, 88.590, 132.165
Angle α, β, γ (deg.)90.000, 90.000, 90.000
Int Tables number96
Space group name H-MP43212

-
Components

#1: Protein Tyrosine-protein phosphatase non-receptor type 1 / Protein-tyrosine phosphatase 1B / PTP-1B


Mass: 34733.648 Da / Num. of mol.: 1 / Mutation: D181A/Q262A
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Gene: PTPN1, PTP1B / Production host: Escherichia coli (E. coli) / References: UniProt: P18031, protein-tyrosine-phosphatase
#2: Protein/peptide Tyrosine-protein kinase JAK3 activation loop peptide / Janus kinase 3 / JAK-3 / Leukocyte janus kinase / L-JAK


Mass: 1907.171 Da / Num. of mol.: 1 / Fragment: residues 973-988 of JAK3 / Source method: obtained synthetically / Source: (synth.) Homo sapiens (human)
References: UniProt: P52333, non-specific protein-tyrosine kinase
#3: Chemical ChemComp-PO4 / PHOSPHATE ION


Mass: 94.971 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: PO4 / Feature type: SUBJECT OF INVESTIGATION
#4: Chemical ChemComp-TRS / 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL / TRIS BUFFER


Mass: 122.143 Da / Num. of mol.: 1 / Source method: obtained synthetically / Formula: C4H12NO3 / Feature type: SUBJECT OF INVESTIGATION / Comment: pH buffer*YM
#5: Water ChemComp-HOH / water


Mass: 18.015 Da / Num. of mol.: 86 / Source method: isolated from a natural source / Formula: H2O
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: X-RAY DIFFRACTION / Number of used crystals: 1

-
Sample preparation

CrystalDensity Matthews: 3.67 Å3/Da / Density % sol: 66.52 %
Crystal growTemperature: 281.15 K / Method: vapor diffusion, hanging drop
Details: 12% Peg 4K, 0.15 M Calcium acetate, 0.05 M MES (pH 6.5)

-
Data collection

DiffractionMean temperature: 100 K / Serial crystal experiment: N
Diffraction sourceSource: SYNCHROTRON / Site: Australian Synchrotron / Beamline: MX2 / Wavelength: 0.95373 Å
DetectorType: DECTRIS EIGER X 16M / Detector: PIXEL / Date: Nov 4, 2017
RadiationProtocol: SINGLE WAVELENGTH / Monochromatic (M) / Laue (L): M / Scattering type: x-ray
Radiation wavelengthWavelength: 0.95373 Å / Relative weight: 1
ReflectionResolution: 2.349→39.62 Å / Num. obs: 22507 / % possible obs: 99.49 % / Redundancy: 11.4 % / CC1/2: 0.1 / Net I/σ(I): 27.61
Reflection shellResolution: 2.349→2.43 Å / Num. unique obs: 2118 / CC1/2: 0.91

-
Processing

Software
NameVersionClassification
PHENIX1.16_3549refinement
PDB_EXTRACT3.27data extraction
XDSdata reduction
XDSdata scaling
PHENIXphasing
RefinementMethod to determine structure: MOLECULAR REPLACEMENT
Starting model: 1PTY
Resolution: 2.349→39.619 Å / SU ML: 0.27 / Cross valid method: THROUGHOUT / σ(F): 1.36 / Phase error: 26.31 / Stereochemistry target values: ML
RfactorNum. reflection% reflection
Rfree0.2475 1996 8.87 %
Rwork0.206 20511 -
obs0.2096 22507 99.52 %
Solvent computationShrinkage radii: 0.9 Å / VDW probe radii: 1.11 Å / Solvent model: FLAT BULK SOLVENT MODEL
Displacement parametersBiso max: 102.91 Å2 / Biso mean: 61.5873 Å2 / Biso min: 35.21 Å2
Refinement stepCycle: final / Resolution: 2.349→39.619 Å
ProteinNucleic acidLigandSolventTotal
Num. atoms2393 0 25 86 2504
Biso mean--72.76 58.01 -
Num. residues----302
LS refinement shell

Refine-ID: X-RAY DIFFRACTION / Rfactor Rfree error: 0

Resolution (Å)Rfactor RfreeNum. reflection RfreeRfactor RworkNum. reflection Rwork% reflection obs (%)
2.3495-2.40820.31521330.2683136694
2.4082-2.47330.26991380.2479141899
2.4733-2.54610.32291400.24721441100
2.5461-2.62820.31381390.25941441100
2.6282-2.72210.29271420.25471448100
2.7221-2.83110.33251420.26671456100
2.8311-2.95990.31461410.2651450100
2.9599-3.11590.31981420.26791463100
3.1159-3.3110.29831420.24211463100
3.311-3.56650.26521440.22431470100
3.5665-3.92520.22681430.20281466100
3.9252-4.49250.21381450.16721499100
4.4925-5.65740.19361460.16271517100
5.6574-39.6190.22151590.18521613100

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more