[English] 日本語
Yorodumi
- PDB-8ekd: Cryo-EM map of SARS-CoV-2 Omicron BA.2 spike in complex with 2130... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: PDB / ID: 8ekd
TitleCryo-EM map of SARS-CoV-2 Omicron BA.2 spike in complex with 2130-1-0114-112
Components
  • Fab LLNL-199 HC
  • Fab LLNL-199 LC
  • Spike protein S2'
KeywordsIMMUNE SYSTEM / Fab / Cov2 / BA.2 / Omicron
Function / homology
Function and homology information


Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell ...Maturation of spike protein / viral translation / Translation of Structural Proteins / Virion Assembly and Release / host cell surface / host extracellular space / suppression by virus of host tetherin activity / Induction of Cell-Cell Fusion / structural constituent of virion / entry receptor-mediated virion attachment to host cell / host cell endoplasmic reticulum-Golgi intermediate compartment membrane / receptor-mediated endocytosis of virus by host cell / membrane fusion / Attachment and Entry / positive regulation of viral entry into host cell / receptor-mediated virion attachment to host cell / receptor ligand activity / host cell surface receptor binding / fusion of virus membrane with host plasma membrane / fusion of virus membrane with host endosome membrane / viral envelope / virion attachment to host cell / SARS-CoV-2 activates/modulates innate and adaptive immune responses / host cell plasma membrane / virion membrane / identical protein binding / membrane / plasma membrane
Similarity search - Function
Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like ...Spike (S) protein S1 subunit, receptor-binding domain, SARS-CoV-2 / Spike (S) protein S1 subunit, N-terminal domain, SARS-CoV-like / Betacoronavirus spike (S) glycoprotein S1 subunit N-terminal (NTD) domain profile. / Spike glycoprotein, N-terminal domain superfamily / Betacoronavirus spike (S) glycoprotein S1 subunit C-terminal (CTD) domain profile. / Spike glycoprotein, betacoronavirus / Spike (S) protein S1 subunit, receptor-binding domain, betacoronavirus / Spike S1 subunit, receptor binding domain superfamily, betacoronavirus / Betacoronavirus spike glycoprotein S1, receptor binding / Spike glycoprotein S1, N-terminal domain, betacoronavirus-like / Betacoronavirus-like spike glycoprotein S1, N-terminal / Spike glycoprotein S2, coronavirus, heptad repeat 1 / Spike glycoprotein S2, coronavirus, heptad repeat 2 / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 2 (HR2) region profile. / Coronavirus spike (S) glycoprotein S2 subunit heptad repeat 1 (HR1) region profile. / Spike glycoprotein S2 superfamily, coronavirus / Spike glycoprotein S2, coronavirus / Coronavirus spike glycoprotein S2 / Coronavirus spike glycoprotein S1, C-terminal / Coronavirus spike glycoprotein S1, C-terminal
Similarity search - Domain/homology
Biological speciesHomo sapiens (human)
Severe acute respiratory syndrome coronavirus
MethodELECTRON MICROSCOPY / single particle reconstruction / cryo EM / Resolution: 3.6 Å
AuthorsBinshtein, E. / Crowe, J.E.
Funding support United States, 2items
OrganizationGrant numberCountry
Defense Advanced Research Projects Agency (DARPA)HR0011-18-3-0001 United States
National Institutes of Health/National Institute Of Allergy and Infectious Diseases (NIH/NIAID)AI157155 United States
CitationJournal: Nature / Year: 2024
Title: Computationally restoring the potency of a clinical antibody against Omicron.
Authors: Thomas A Desautels / Kathryn T Arrildt / Adam T Zemla / Edmond Y Lau / Fangqiang Zhu / Dante Ricci / Stephanie Cronin / Seth J Zost / Elad Binshtein / Suzanne M Scheaffer / Bernadeta ...Authors: Thomas A Desautels / Kathryn T Arrildt / Adam T Zemla / Edmond Y Lau / Fangqiang Zhu / Dante Ricci / Stephanie Cronin / Seth J Zost / Elad Binshtein / Suzanne M Scheaffer / Bernadeta Dadonaite / Brenden K Petersen / Taylor B Engdahl / Elaine Chen / Laura S Handal / Lynn Hall / John W Goforth / Denis Vashchenko / Sam Nguyen / Dina R Weilhammer / Jacky Kai-Yin Lo / Bonnee Rubinfeld / Edwin A Saada / Tracy Weisenberger / Tek-Hyung Lee / Bradley Whitener / James B Case / Alexander Ladd / Mary S Silva / Rebecca M Haluska / Emilia A Grzesiak / Christopher G Earnhart / Svetlana Hopkins / Thomas W Bates / Larissa B Thackray / Brent W Segelke / / Antonietta Maria Lillo / Shivshankar Sundaram / Jesse D Bloom / Michael S Diamond / James E Crowe / Robert H Carnahan / Daniel M Faissol /
Abstract: The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs and revealed how quickly viral escape can curtail effective options. When the SARS-CoV-2 ...The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs and revealed how quickly viral escape can curtail effective options. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.
History
DepositionSep 20, 2022Deposition site: RCSB / Processing site: RCSB
Revision 1.0Feb 21, 2024Provider: repository / Type: Initial release
Revision 1.1Mar 13, 2024Group: Database references / Structure summary / Category: citation / struct / Item: _citation.title / _struct.title
Revision 1.2Jun 19, 2024Group: Database references / Category: citation / citation_author
Item: _citation.country / _citation.journal_abbrev ..._citation.country / _citation.journal_abbrev / _citation.journal_id_ASTM / _citation.journal_id_CSD / _citation.journal_id_ISSN / _citation.journal_volume / _citation.page_first / _citation.page_last / _citation.pdbx_database_id_DOI / _citation.pdbx_database_id_PubMed / _citation.title / _citation.year

-
Structure visualization

Structure viewerMolecule:
MolmilJmol/JSmol

Downloads & links

-
Assembly

Deposited unit
E: Fab LLNL-199 HC
F: Fab LLNL-199 LC
G: Spike protein S2'
hetero molecules


Theoretical massNumber of molelcules
Total (without water)47,9824
Polymers47,7603
Non-polymers2211
Water00
1


  • Idetical with deposited unit
  • defined by author&software
  • Evidence: gel filtration
TypeNameSymmetry operationNumber
identity operation1_555x,y,z1

-
Components

#1: Antibody Fab LLNL-199 HC


Mass: 14310.997 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#2: Antibody Fab LLNL-199 LC


Mass: 12470.904 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Homo sapiens (human) / Production host: Homo sapiens (human)
#3: Protein Spike protein S2'


Mass: 20978.592 Da / Num. of mol.: 1 / Fragment: Receptor-binding domain (RBD)
Source method: isolated from a genetically manipulated source
Source: (gene. exp.) Severe acute respiratory syndrome coronavirus
Gene: S, 2 / Production host: Homo sapiens (human) / References: UniProt: P0DTC2
#4: Sugar ChemComp-NAG / 2-acetamido-2-deoxy-beta-D-glucopyranose / N-acetyl-beta-D-glucosamine / 2-acetamido-2-deoxy-beta-D-glucose / 2-acetamido-2-deoxy-D-glucose / 2-acetamido-2-deoxy-glucose / N-ACETYL-D-GLUCOSAMINE


Type: D-saccharide, beta linking / Mass: 221.208 Da / Num. of mol.: 1
Source method: isolated from a genetically manipulated source
Formula: C8H15NO6 / Feature type: SUBJECT OF INVESTIGATION
IdentifierTypeProgram
DGlcpNAcbCONDENSED IUPAC CARBOHYDRATE SYMBOLGMML 1.0
N-acetyl-b-D-glucopyranosamineCOMMON NAMEGMML 1.0
b-D-GlcpNAcIUPAC CARBOHYDRATE SYMBOLPDB-CARE 1.0
GlcNAcSNFG CARBOHYDRATE SYMBOLGMML 1.0
Has ligand of interestY

-
Experimental details

-
Experiment

ExperimentMethod: ELECTRON MICROSCOPY
EM experimentAggregation state: PARTICLE / 3D reconstruction method: single particle reconstruction

-
Sample preparation

Component
IDNameTypeEntity IDParent-IDSource
1SARS Cov2 Omicron BA.2 RBD complex with Fab LLNL-199COMPLEX#1-#20MULTIPLE SOURCES
2SARS Cov2 Omicron BA.2 RBDCOMPLEX#31RECOMBINANT
3Fab LLNL-199COMPLEX#1-#21RECOMBINANT
Molecular weight
IDEntity assembly-IDExperimental value
11NO
21NO
31NO
Source (natural)
IDEntity assembly-IDOrganismNcbi tax-ID
12Severe acute respiratory syndrome coronavirus2901879
23Homo sapiens (human)9606
Source (recombinant)
IDEntity assembly-IDOrganismNcbi tax-ID
12Homo sapiens (human)9606
23Homo sapiens (human)9606
Buffer solutionpH: 8
SpecimenConc.: 0.6 mg/ml / Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES
Specimen supportGrid material: COPPER / Grid mesh size: 300 divisions/in. / Grid type: Quantifoil R1.2/1.3
VitrificationInstrument: FEI VITROBOT MARK IV / Cryogen name: ETHANE / Humidity: 100 % / Chamber temperature: 293.15 K

-
Electron microscopy imaging

Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company
MicroscopyModel: FEI TITAN KRIOS
Electron gunElectron source: FIELD EMISSION GUN / Accelerating voltage: 300 kV / Illumination mode: OTHER
Electron lensMode: BRIGHT FIELD / Nominal magnification: 130000 X / Nominal defocus max: 1800 nm / Nominal defocus min: 800 nm / Cs: 2.7 mm / Alignment procedure: ZEMLIN TABLEAU
Specimen holderCryogen: NITROGEN / Specimen holder model: FEI TITAN KRIOS AUTOGRID HOLDER
Image recordingAverage exposure time: 1.5 sec. / Electron dose: 52.173 e/Å2 / Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Num. of grids imaged: 1 / Num. of real images: 23469
EM imaging opticsEnergyfilter name: GIF Bioquantum / Energyfilter slit width: 20 eV

-
Processing

EM software
IDNameVersionCategory
1Topazparticle selection
2EPUimage acquisition
4CTFFINDCTF correction
7UCSF Chimeramodel fitting
9RELION4initial Euler assignment
10RELION4final Euler assignment
11RELION4classification
12RELION43D reconstruction
13PHENIXmodel refinement
CTF correctionType: PHASE FLIPPING AND AMPLITUDE CORRECTION
3D reconstructionResolution: 3.6 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 386950 / Symmetry type: POINT
Atomic model buildingSpace: REAL
Atomic model building

3D fitting-ID: 1 / Accession code: 7L7E / Initial refinement model-ID: 1 / PDB-ID: 7L7E

/ Source name: PDB / Type: experimental model

IDPdb chain-IDChain-ID
1EE
2FF
3GG
Refine LS restraints
Refine-IDTypeDev idealNumber
ELECTRON MICROSCOPYf_bond_d0.0043323
ELECTRON MICROSCOPYf_angle_d0.6914506
ELECTRON MICROSCOPYf_dihedral_angle_d8.646461
ELECTRON MICROSCOPYf_chiral_restr0.044473
ELECTRON MICROSCOPYf_plane_restr0.008580

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbjlvh1.pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more