+
Open data
-
Basic information
Entry | Database: PDB / ID: 7yk2 | ||||||
---|---|---|---|---|---|---|---|
Title | Cryo-EM structure of Apo-alpha-syn fibril | ||||||
![]() | Alpha-synuclein | ||||||
![]() | PROTEIN FIBRIL / amyloid | ||||||
Function / homology | ![]() negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber / mitochondrial membrane organization ...negative regulation of mitochondrial electron transport, NADH to ubiquinone / : / neutral lipid metabolic process / regulation of acyl-CoA biosynthetic process / negative regulation of dopamine uptake involved in synaptic transmission / negative regulation of norepinephrine uptake / positive regulation of SNARE complex assembly / positive regulation of hydrogen peroxide catabolic process / supramolecular fiber / mitochondrial membrane organization / negative regulation of chaperone-mediated autophagy / regulation of synaptic vesicle recycling / regulation of reactive oxygen species biosynthetic process / negative regulation of platelet-derived growth factor receptor signaling pathway / positive regulation of protein localization to cell periphery / negative regulation of exocytosis / regulation of glutamate secretion / response to iron(II) ion / SNARE complex assembly / positive regulation of neurotransmitter secretion / dopamine biosynthetic process / regulation of norepinephrine uptake / transporter regulator activity / regulation of locomotion / synaptic vesicle priming / mitochondrial ATP synthesis coupled electron transport / regulation of macrophage activation / positive regulation of inositol phosphate biosynthetic process / negative regulation of microtubule polymerization / synaptic vesicle transport / positive regulation of receptor recycling / dopamine uptake involved in synaptic transmission / protein kinase inhibitor activity / dynein complex binding / regulation of dopamine secretion / negative regulation of thrombin-activated receptor signaling pathway / cuprous ion binding / positive regulation of endocytosis / positive regulation of exocytosis / response to magnesium ion / synaptic vesicle exocytosis / enzyme inhibitor activity / kinesin binding / synaptic vesicle endocytosis / regulation of presynapse assembly / response to type II interferon / cysteine-type endopeptidase inhibitor activity / negative regulation of serotonin uptake / alpha-tubulin binding / supramolecular fiber organization / inclusion body / phospholipid metabolic process / cellular response to copper ion / axon terminus / cellular response to epinephrine stimulus / Hsp70 protein binding / response to interleukin-1 / regulation of microtubule cytoskeleton organization / SNARE binding / positive regulation of release of sequestered calcium ion into cytosol / adult locomotory behavior / negative regulation of protein kinase activity / excitatory postsynaptic potential / fatty acid metabolic process / phosphoprotein binding / protein tetramerization / microglial cell activation / regulation of long-term neuronal synaptic plasticity / synapse organization / ferrous iron binding / protein destabilization / PKR-mediated signaling / phospholipid binding / receptor internalization / tau protein binding / long-term synaptic potentiation / synaptic vesicle membrane / positive regulation of inflammatory response / actin cytoskeleton / actin binding / growth cone / cell cortex / cellular response to oxidative stress / neuron apoptotic process / chemical synaptic transmission / molecular adaptor activity / negative regulation of neuron apoptotic process / response to lipopolysaccharide / histone binding / amyloid fibril formation / lysosome / oxidoreductase activity / postsynapse / transcription cis-regulatory region binding / positive regulation of apoptotic process / Amyloid fiber formation / copper ion binding / response to xenobiotic stimulus / axon / neuronal cell body Similarity search - Function | ||||||
Biological species | ![]() | ||||||
Method | ELECTRON MICROSCOPY / helical reconstruction / cryo EM / Resolution: 2.8 Å | ||||||
![]() | Xu, Q.H. / Xia, W.C. / Tao, Y.Q. / Liu, C. | ||||||
Funding support | 1items
| ||||||
![]() | ![]() Title: Conformational Dynamics of an α-Synuclein Fibril upon Receptor Binding Revealed by Insensitive Nuclei Enhanced by Polarization Transfer-Based Solid-State Nuclear Magnetic Resonance and Cryo-Electron Microscopy. Authors: Shengnan Zhang / Juan Li / Qianhui Xu / Wencheng Xia / Youqi Tao / Chaowei Shi / Dan Li / ShengQi Xiang / Cong Liu / ![]() Abstract: Many amyloid fibrils associated with neurodegenerative diseases consist of an ordered fibril core (FC) and disordered terminal regions (TRs). The former represents a stable scaffold, while the latter ...Many amyloid fibrils associated with neurodegenerative diseases consist of an ordered fibril core (FC) and disordered terminal regions (TRs). The former represents a stable scaffold, while the latter is rather active in binding with various partners. Current structural studies mainly focus on the ordered FC since the high flexibility of TRs hinders structural characterization. Here, by combining insensitive nuclei enhanced by polarization transfer-based H-detected solid-state NMR and cryo-EM, we explored the intact structure of an α-syn fibril including both FC and TRs and further studied the conformational dynamics of the fibril upon binding to lymphocyte activation gene 3 (LAG3)─a cell surface receptor that is involved in α-syn fibril transmission in brains. We found that both the N- and C-TRs of α-syn are disordered in free fibrils featuring similar conformation ensembles as those in soluble monomers. While in the presence of the D1 domain of LAG3 (L3D1), the C-TR directly binds to L3D1, meanwhile the N-TR folds into a β-strand and further integrates with the FC, which leads to alteration of the overall fibril structure and surface property. Our work reveals synergistic conformational transition of the intrinsically disordered TRs of α-syn, which sheds light on mechanistic understanding of the essential role of TRs in regulating the structure and pathology of amyloid fibrils. | ||||||
History |
|
-
Structure visualization
Structure viewer | Molecule: ![]() ![]() |
---|
-
Downloads & links
-
Download
PDBx/mmCIF format | ![]() | 70.7 KB | Display | ![]() |
---|---|---|---|---|
PDB format | ![]() | 51.3 KB | Display | ![]() |
PDBx/mmJSON format | ![]() | Tree view | ![]() | |
Others | ![]() |
-Validation report
Arichive directory | ![]() ![]() | HTTPS FTP |
---|
-Related structure data
Related structure data | ![]() 33884MC ![]() 7yk8C M: map data used to model this data C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
-
Assembly
Deposited unit | ![]()
|
---|---|
1 |
|
-
Components
#1: Protein | Mass: 14476.108 Da / Num. of mol.: 6 Source method: isolated from a genetically manipulated source Source: (gene. exp.) ![]() ![]() ![]() |
---|
-Experimental details
-Experiment
Experiment | Method: ELECTRON MICROSCOPY |
---|---|
EM experiment | Aggregation state: FILAMENT / 3D reconstruction method: helical reconstruction |
-
Sample preparation
Component | Name: Cryo-EM structure of Apo-alpha-syn fibril / Type: ORGANELLE OR CELLULAR COMPONENT / Entity ID: all / Source: RECOMBINANT |
---|---|
Molecular weight | Experimental value: NO |
Source (natural) | Organism: ![]() |
Source (recombinant) | Organism: ![]() ![]() |
Buffer solution | pH: 7.4 |
Specimen | Embedding applied: NO / Shadowing applied: NO / Staining applied: NO / Vitrification applied: YES |
Vitrification | Cryogen name: ETHANE |
-
Electron microscopy imaging
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
---|---|
Microscopy | Model: FEI TITAN KRIOS |
Electron gun | Electron source: ![]() |
Electron lens | Mode: BRIGHT FIELD / Nominal defocus max: 2000 nm / Nominal defocus min: 1000 nm |
Image recording | Electron dose: 55 e/Å2 / Film or detector model: GATAN K3 (6k x 4k) |
-
Processing
CTF correction | Type: NONE |
---|---|
Helical symmerty | Angular rotation/subunit: 179.634 ° / Axial rise/subunit: 2.412 Å / Axial symmetry: C1 |
3D reconstruction | Resolution: 2.8 Å / Resolution method: FSC 0.143 CUT-OFF / Num. of particles: 53784 / Symmetry type: HELICAL |