Journal: Nat Chem Biol / Year: 2026 Title: Autopalmitoylation of IDH1-R132H regulates its neomorphic activity in cancer cells. Authors: Lu Hu / Jinyu Lin / Liping Sun / Alison M Berezuk / Katharine S Tuttle / Xing Zhu / Hyuk-Soo Seo / Sirano Dhe-Paganon / Pan Li / Yang Sun / Lisheng Ni / Jianan Zhang / Dazhi Tan / Hiroaki ...Authors: Lu Hu / Jinyu Lin / Liping Sun / Alison M Berezuk / Katharine S Tuttle / Xing Zhu / Hyuk-Soo Seo / Sirano Dhe-Paganon / Pan Li / Yang Sun / Lisheng Ni / Jianan Zhang / Dazhi Tan / Hiroaki Wakimoto / Daniel P Cahill / Xiaochen Bai / Xuelian Luo / John M Asara / Sriram Subramaniam / Yibing Shan / Xu Wu / Abstract: Gain-of-function mutations of isocitrate dehydrogenase 1 (IDH1) lead to oncometabolite (R)-2-hydroxyglutarate production, contributing to the tumorigenesis of multiple human cancers. While fatty acid ...Gain-of-function mutations of isocitrate dehydrogenase 1 (IDH1) lead to oncometabolite (R)-2-hydroxyglutarate production, contributing to the tumorigenesis of multiple human cancers. While fatty acid biosynthesis is critical for IDH1-mutant tumor growth, the underlying mechanisms remain unclear. Here, leveraging chemical probes and chemoproteomic profiling, we identified that oncogenic IDH1-R132H is uniquely autopalmitoylated at C269, which is not observed in wild-type IDH1. This modification responds to fatty acids and regulates R132H enzymatic activity by enhancing substrate and cofactor binding, as well as dimerization. Loss of C269 palmitoylation reverses IDH1-R132H-induced metabolic reprogramming and hypermethylation phenotypes and impairs cell transformation. Interestingly, C269 autopalmitoylation occurs within a hydrophobic pocket, targeted by a clinical IDH1-mutant inhibitor (LY3410738). Our study reveals that autopalmitoylation, conferred by the IDH1 mutation, links fatty acid metabolism to the regulation of IDH1 mutant activity and represents a druggable vulnerability in IDH1-mutant cancers.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi