National Natural Science Foundation of China (NSFC)
32371269
China
National Natural Science Foundation of China (NSFC)
32470247
China
Chinese Academy of Sciences
2024kf05
China
Citation
Journal: J Integr Plant Biol / Year: 2025 Title: Architecture of photosystem I-light-harvesting complex from the eukaryotic filamentous yellow-green alga Tribonema minus. Authors: Ruiqi Shao / Yuqi Zou / Hui Shang / Yue Qiu / Zuxing Liang / Xiaodong Su / Shumeng Zhang / Mei Li / Xiaowei Pan / Abstract: Eukaryotic photosystem I (PSI) is a multi-subunit pigment-protein supercomplex that consists of a core complex and multiple peripheral light-harvesting complexes I (LHCIs), which increases the light ...Eukaryotic photosystem I (PSI) is a multi-subunit pigment-protein supercomplex that consists of a core complex and multiple peripheral light-harvesting complexes I (LHCIs), which increases the light absorption capacity of the core complex. Throughout the evolution of oxygenic photoautotrophs, the core subunits of PSI have remained highly conserved, while LHCIs exhibit significant variability, presumably to adapt to diverse environments. This study presents a 2.82 Å resolution structure of PSI from the filamentous yellow-green alga Tribonema minus (Tm), a member of the class Xanthophyceae that evolved from red algae through endosymbiosis and is considered a promising candidate for biofuel production due to its high biomass and lipid content. Our structure reveals a supramolecular organization consisting of 12 core subunits and 13 LHCIs, here referred to as Xanthophyceae light-harvesting complexes (XLHs), along with the arrangement of pigments within the TmPSI-XLH supercomplex. A structural comparison between TmPSI-XLH and PSI-LHCI from various red lineages highlights distinctive features of TmPSI-XLH, suggesting that it represents a unique intermediate state in the PSI assembly process during the evolutionary transition from red algae to diatoms. Our findings advance the understanding of the molecular mechanisms responsible for energy transfer in Xanthophyceae PSI-XLH and the evolutionary adaptation of red lineages.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi