- EMDB-61729: Cryo-EM structure of ferritin variant R63MeH/R67MeH with Cu(II) -
+
データを開く
IDまたはキーワード:
読み込み中...
-
基本情報
登録情報
データベース: EMDB / ID: EMD-61729
タイトル
Cryo-EM structure of ferritin variant R63MeH/R67MeH with Cu(II)
マップデータ
試料
複合体: 24-mer complex of ferritin variant R63MeH/R67MeH with Cu(II)
タンパク質・ペプチド: Ferritin heavy chain
リガンド: COPPER (II) ION
リガンド: water
キーワード
Cryo-EM / ferritin variant / non-canonical amino acid / H-N-3-Methyl-L-histidine(MeH) / METAL BINDING PROTEIN
機能・相同性
機能・相同性情報
iron ion sequestering activity / ferritin complex / negative regulation of ferroptosis / Scavenging by Class A Receptors / Golgi Associated Vesicle Biogenesis / ferroxidase / autolysosome / ferroxidase activity / negative regulation of fibroblast proliferation / ferric iron binding ...iron ion sequestering activity / ferritin complex / negative regulation of ferroptosis / Scavenging by Class A Receptors / Golgi Associated Vesicle Biogenesis / ferroxidase / autolysosome / ferroxidase activity / negative regulation of fibroblast proliferation / ferric iron binding / autophagosome / Iron uptake and transport / ferrous iron binding / tertiary granule lumen / iron ion transport / ficolin-1-rich granule lumen / intracellular iron ion homeostasis / immune response / iron ion binding / negative regulation of cell population proliferation / Neutrophil degranulation / extracellular exosome / extracellular region / identical protein binding / nucleus / membrane / cytosol / cytoplasm 類似検索 - 分子機能
ジャーナル: J Am Chem Soc / 年: 2024 タイトル: Site-Specific Histidine Aza-Michael Addition in Proteins Enabled by a Ferritin-Based Metalloenzyme. 著者: Jo-Chu Tsou / Chun-Ju Tsou / Chun-Hsiung Wang / An-Li A Ko / Yi-Hui Wang / Huan-Hsuan Liang / Jia-Cheng Sun / Kai-Fa Huang / Tzu-Ping Ko / Shu-Yu Lin / Yane-Shih Wang / 要旨: Histidine modifications of proteins are broadly based on chemical methods triggering N-substitution reactions such as aza-Michael addition at histidine's moderately nucleophilic imidazole side chain. ...Histidine modifications of proteins are broadly based on chemical methods triggering N-substitution reactions such as aza-Michael addition at histidine's moderately nucleophilic imidazole side chain. While recent studies have demonstrated chemoselective, histidine-specific modifications by further exploiting imidazole's electrophilic reactivity to overcome interference from the more nucleophilic lysine and cysteine, achieving site-specific histidine modifications remains a major challenge due to the absence of spatial control over chemical processes. Herein, through X-ray crystallography and cryo-electron microscopy structural studies, we describe the rational design of a nature-inspired, noncanonical amino-acid-incorporated, human ferritin-based metalloenzyme that is capable of introducing site-specific post-translational modifications (PTMs) to histidine in peptides and proteins. Specifically, chemoenzymatic aza-Michael additions on single histidine residues were carried out on eight protein substrates ranging from 10 to 607 amino acids including the insulin peptide hormone. By introducing an insulin-targeting peptide into our metalloenzyme, we further directed modifications to be carried out site-specifically on insulin's B-chain histidine 5. The success of this biocatalysis platform outlines a novel approach in introducing residue- and, moreover, site-specific post-translational modifications to peptides and proteins, which may further enable reactions to be carried out .