Oxidoreductases; Acting on a peroxide as acceptor / indole alkaloid biosynthetic process / catalase activity / hydrogen peroxide catabolic process / response to hydrogen peroxide / peroxisome / heme binding / mitochondrion / metal ion binding Similarity search - Function
Catalase, mono-functional, haem-containing, clades 1 and 3 / Catalase haem-binding site / Catalase proximal heme-ligand signature. / Catalase / Catalase active site / Catalase proximal active site signature. / Catalase core domain / Catalase, mono-functional, haem-containing / Catalase / catalase family profile. / Catalase superfamily Similarity search - Domain/homology
National Natural Science Foundation of China (NSFC)
China
Citation
Journal: Nature / Year: 2025 Title: Chanoclavine synthase operates by an NADPH-independent superoxide mechanism. Authors: Chun-Chi Chen / Zhi-Pu Yu / Ziwei Liu / Yongpeng Yao / Peter-Leon Hagedoorn / Rob Alexander Schmitz / Lujia Yang / Lu Yu / Aokun Liu / Xiang Sheng / Hao Su / Yaqing Ma / Te Wang / Jian-Wen ...Authors: Chun-Chi Chen / Zhi-Pu Yu / Ziwei Liu / Yongpeng Yao / Peter-Leon Hagedoorn / Rob Alexander Schmitz / Lujia Yang / Lu Yu / Aokun Liu / Xiang Sheng / Hao Su / Yaqing Ma / Te Wang / Jian-Wen Huang / Lilan Zhang / Juzhang Yan / Jinping Bao / Chengsen Cui / Xian Li / Panpan Shen / Wuyuan Zhang / Jian Min / Chang-Yun Wang / Rey-Ting Guo / Shu-Shan Gao / Abstract: More than ten ergot alkaloids comprising both natural and semi-synthetic products are used to treat various diseases. The central C ring forms the core pharmacophore for ergot alkaloids, giving them ...More than ten ergot alkaloids comprising both natural and semi-synthetic products are used to treat various diseases. The central C ring forms the core pharmacophore for ergot alkaloids, giving them structural similarity to neurotransmitters, thus enabling their modulation of neurotransmitter receptors. The haem catalase chanoclavine synthase (EasC) catalyses the construction of this ring through complex radical oxidative cyclization. Unlike canonical catalases, which catalyse HO disproportionation, EasC and its homologues represent a broader class of catalases that catalyse O-dependent radical reactions. We have elucidated the structure of EasC by cryo-electron microscopy, revealing a nicotinamide adenine dinucleotide phosphate (reduced) (NADPH)-binding pocket and a haem pocket common to all haem catalases, with a unique homodimeric architecture that is, to our knowledge, previously unobserved. The substrate prechanoclavine unprecedentedly binds in the NADPH-binding pocket, instead of the previously suspected haem-binding pocket, and two pockets were connected by a slender tunnel. Contrary to the established mechanisms, EasC uses superoxide rather than the more generally used transient haem iron-oxygen complexes (such as compounds I, II and III), to mediate substrate transformation through superoxide-mediated cooperative catalysis of the two distant pockets. We propose that this reactive oxygen species mechanism could be widespread in metalloenzyme-catalysed reactions.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi