Journal: Biochem Biophys Res Commun / Year: 2024 Title: Structural insights into Influenza A virus RNA polymerase PB1 binding to nuclear import host factor RanBP5. Authors: Tomomi Uchikubo-Kamo / Naito Ishimoto / Haruka Umezawa / Mikako Hirohama / Maasa Ono / Haruka Kawabata / Kenichi Kamata / Mio Ohki / Hisashi Yoshida / Jae-Hyun Park / Jeremy R H Tame / ...Authors: Tomomi Uchikubo-Kamo / Naito Ishimoto / Haruka Umezawa / Mikako Hirohama / Maasa Ono / Haruka Kawabata / Kenichi Kamata / Mio Ohki / Hisashi Yoshida / Jae-Hyun Park / Jeremy R H Tame / Atsushi Kawaguchi / Sam-Yong Park / Abstract: The genome of influenza A viruses consists of eight RNA segments that form a heterotrimer, and the viral genome undergoes transcription and replication in the nucleus. Thus, during infection, newly ...The genome of influenza A viruses consists of eight RNA segments that form a heterotrimer, and the viral genome undergoes transcription and replication in the nucleus. Thus, during infection, newly synthesized RNA polymerase subunits must be imported into the nucleus. Although several models have been proposed for this process, the consensus is that the RNA polymerase subunits PB1 and PA form a dimer in the cytoplasm and are transported into the nucleus by Ran binding protein 5 (RanBP5). The PB2 subunit undergoes separate transport to complete the nuclear import. However, the molecular mechanism of nuclear import by host factors and their interactions with proteins are largely unknown. Here we present the structural analysis of the RanBP5 and PB1 NLS domain complex by cryo-EM at 3.2 Å resolution. The pattern shows that the NLS domain of PB1 does not exist in a secondary structure and interacts with RanBP5 in a wrapped state. In addition, biochemical analyses of the mutant have identified critical amino acid sites involved in complex binding. The results suggest a stepwise assembly of influenza virus structural components regulated by nuclear import mechanisms and host factor binding, with important implications for drug discovery research.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi