Journal: bioRxiv / Year: 2024 Title: Structural maturation of the matrix lattice is not required for HIV-1 particle infectivity. Authors: Long Chen / Yuta Hikichi / Juan S Rey / Caner Akil / Yanan Zhu / Hana Veler / Yao Shen / Juan R Perilla / Eric O Freed / Peijun Zhang Abstract: HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag ...HIV-1 assembly is initiated by the binding of Gag polyproteins to the inner leaflet of the plasma membrane, mediated by the myristylated matrix (MA) domain of Gag. Subsequent to membrane binding, Gag oligomerizes and buds as an immature, non-infectious virus particle, which, upon cleavage of the Gag precursor by the viral protease, transforms into a mature, infectious virion. During maturation, the MA lattice underlying the viral membrane undergoes a structural rearrangement and the newly released capsid (CA) protein forms a mature capsid that encloses the viral genome. While it is well established that formation of the mature capsid is essential to particle infectivity, the functional role of MA structural maturation remains unclear. Here, we examine MA maturation of an MA triple mutant, L20K/E73K/A82T, which exhibits distinct biochemical behaviours. The L20K/E73K/A82T mutant is a revertant derived by propagating the L20K mutant, which exhibits reduced infectivity and increased association of the Gag polyprotein with membranes. L20K/E73K/A82T replicates similarly to wild type but retains the increased Gag membrane binding properties of L20K. L20K/E73K/A82T MA also sediments to high-density fractions in sucrose gradients after detergent treatment under conditions that fully solubilize WT MA, suggesting enhanced MA-MA interactions. Cryo-electron tomography with subtomogram averaging reveals that the immature MA lattice of L20K/E73K/A82T closely resembles the wild type. However, mature virions of the triple mutant lack a detectable MA lattice, in stark contrast to both the wild type and L20K mutant. All-atom molecular dynamics simulations suggest that this absence results from destabilized inter-trimer interactions in the mature L20K/E73K/A82T MA. Furthermore, introducing additional mutations designed to disrupt the mature MA lattice does not impair particle infectivity. These findings suggest that an ordered, membrane-associated mature MA lattice is not essential for HIV-1 infectivity, providing new insights into the structural plasticity of the matrix during maturation and its functional role in the viral lifecycle.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi