National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
GM138756
United States
National Institutes of Health/National Cancer Institute (NIH/NCI)
CA142746
United States
Citation
Journal: Angew Chem Int Ed Engl / Year: 2025 Title: Intrinsically Disordered Peptide Nanofibers from a Structured Motif Within Proteins. Authors: Yuchen Qiao / Ayisha Zia / Adrianna Shy / Grace Wu / Matthew Chu / Zhiyu Liu / Fengbin Wang / Bing Xu / Abstract: Intrinsically disordered regions (IDRs) are ubiquitous in proteins, orchestrating complex cellular signaling through higher-order protein assemblies. However, the properties and functions of ...Intrinsically disordered regions (IDRs) are ubiquitous in proteins, orchestrating complex cellular signaling through higher-order protein assemblies. However, the properties and functions of intrinsically disordered peptide (IDP) assemblies are largely underexplored. This work unveiled a facile strategy for engineering IDP assemblies. We demonstrate that conjugating a structured motif derived from a protein's phosphorylation site to a self-assembling tripeptide unexpectedly yields self-assembled nanofibers with intrinsic disorder. Specifically, by using a glycine linker to attach a pentapeptide derived from a phosphorylation site within a random coil region of SRC kinase to the C-terminus of a widely used self-assembling enabler, we generated a phosphorylated octapeptide. The octapeptide exhibits cell compatibility and forms a hydrogel upon dephosphorylation of the phosphooctapeptide. Cryo-electron microscopy (cryo-EM) structural analysis of the nanofibers reveals that the peptides adopt two types of helical arrangements but exhibit intrinsic disorder at the periphery of the nanofibers. The hydrogels exhibit decreased protein adsorption with increasing peptide concentration. This study represents the first instance of a structured random coil within a protein transitioning into an intrinsically disordered state within self-assembled peptide nanofibers, expanding the pool of peptide sequences for IDPs and providing valuable insights for the engineering of peptide nanofibers with intrinsic disorder for the development of cell-compatible biomaterials.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi