National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
GM071940
United States
National Institutes of Health/Office of the Director
1S10OD018111
United States
National Science Foundation (NSF, United States)
1515843
United States
National Science Foundation (NSF, United States)
1911781
United States
Department of Energy (DOE, United States)
DE-FC02-02ER63421
United States
National Science Foundation (NSF, United States)
1338135
United States
National Science Foundation (NSF, United States)
1548924
United States
Citation
Journal: Sci Adv / Year: 2024 Title: Composition and in situ structure of the cell envelope and surface layer. Authors: Hui Wang / Jiayan Zhang / Shiqing Liao / Anne M Henstra / Deborah Leon / Jonathan Erde / Joseph A Loo / Rachel R Ogorzalek Loo / Z Hong Zhou / Robert P Gunsalus / Abstract: Archaea share genomic similarities with Eukarya and cellular architectural similarities with Bacteria, though archaeal and bacterial surface layers (S-layers) differ. Using cellular cryo-electron ...Archaea share genomic similarities with Eukarya and cellular architectural similarities with Bacteria, though archaeal and bacterial surface layers (S-layers) differ. Using cellular cryo-electron tomography, we visualized the S-layer lattice surrounding , a methanogenic archaeon. Though more compact than known structures, 's S-layer is a flexible hexagonal lattice of dome-shaped tiles, uniformly spaced from both the overlying cell sheath and the underlying cell membrane. Subtomogram averaging resolved the S-layer hexamer tile at 6.4-angstrom resolution. By fitting an AlphaFold model into hexamer tiles in flat and curved conformations, we uncover intra- and intertile interactions that contribute to the S-layer's cylindrical and flexible architecture, along with a spacer extension for cell membrane attachment. cell's end plug structure, likely composed of S-layer isoforms, further highlights the uniqueness of this archaeal cell. These structural features offer advantages for methane release and reflect divergent evolutionary adaptations to environmental pressures during early microbial emergence.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi