Journal: Structure / Year: 2025 Title: Structural basis for DCAF2 as a novel E3 ligase for PROTAC-mediated targeted protein degradation. Authors: Evan J McMahon / Alexander G Cioffi / Patrick R Visperas / Yueqing Lin / Michael Shaghafi / Courtney M Daczkowski / Johannes C Hermann / Robert A Everley / Richard M Neve / Daniel A Erlanson ...Authors: Evan J McMahon / Alexander G Cioffi / Patrick R Visperas / Yueqing Lin / Michael Shaghafi / Courtney M Daczkowski / Johannes C Hermann / Robert A Everley / Richard M Neve / Daniel A Erlanson / Kevin R Webster / Vikram Narayan / Weiru Wang / Abstract: Targeted protein degradation (TPD) leverages the ubiquitin-proteasome system to eliminate disease-causing proteins via E3 ligases. To date, the field is limited to utilizing a few of the over 600 ...Targeted protein degradation (TPD) leverages the ubiquitin-proteasome system to eliminate disease-causing proteins via E3 ligases. To date, the field is limited to utilizing a few of the over 600 human E3 ligases. To expand this repertoire, we conducted structural and functional validation of DDB1 (Damage-specific DNA binding protein 1) and Cullin-associated factor (DCAF)2 (DTL/CDT2), a Cullin4-RING ligase substrate adaptor implicated in DNA damage response and cancer, as a novel E3 for TPD. Cryoelectron microscopy (cryo-EM) structures of the DCAF2:DDB1:DDA1 complex (3.3 Å), a ligand bound complex (3.1 Å), and a ternary complex with a covalent proteolysis-targeting chimera (PROTAC) and BRD4 (3.4 Å) reveal PROTAC-mediated substrate recruitment. Using covalent bifunctional tool compounds engaging residue C141 in the WD40 domain, we demonstrate robust ubiquitination in biochemical assays and cellular TPD using the COFFEE (covalent functionalization followed by E3 electroporation) method. These findings position DCAF2 as a promising E3 adaptor for PROTAC strategies and identify C141 as a relevant site for future PROTAC discovery.
Film or detector model: GATAN K3 (6k x 4k) / Number grids imaged: 1 / Number real images: 7179 / Average exposure time: 1.4 sec. / Average electron dose: 51.87 e/Å2
Electron beam
Acceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi