[English] 日本語
Yorodumi
- EMDB-44366: Cryo-EM structure of the human TRPM4 in complex with calcium at 1... -

+
Open data


ID or keywords:

Loading...

-
Basic information

Entry
Database: EMDB / ID: EMD-44366
TitleCryo-EM structure of the human TRPM4 in complex with calcium at 18 degrees Celsius
Map data
Sample
  • Complex: human TRPM4 in complex with calcium at 18 degrees Celsius
    • Protein or peptide: Transient receptor potential cation channel subfamily M member 4
  • Ligand: CALCIUM IONCalcium
Keywordsion channel / TRP channel / TRANSPORT PROTEIN
Function / homology
Function and homology information


positive regulation of atrial cardiac muscle cell action potential / positive regulation of regulation of vascular associated smooth muscle cell membrane depolarization / sodium channel complex / regulation of T cell cytokine production / membrane depolarization during AV node cell action potential / membrane depolarization during bundle of His cell action potential / membrane depolarization during Purkinje myocyte cell action potential / negative regulation of bone mineralization / ligand-gated calcium channel activity / sodium ion import across plasma membrane ...positive regulation of atrial cardiac muscle cell action potential / positive regulation of regulation of vascular associated smooth muscle cell membrane depolarization / sodium channel complex / regulation of T cell cytokine production / membrane depolarization during AV node cell action potential / membrane depolarization during bundle of His cell action potential / membrane depolarization during Purkinje myocyte cell action potential / negative regulation of bone mineralization / ligand-gated calcium channel activity / sodium ion import across plasma membrane / regulation of ventricular cardiac muscle cell action potential / sodium channel activity / calcium-activated cation channel activity / inorganic cation transmembrane transport / TRP channels / dendritic cell chemotaxis / cellular response to ATP / positive regulation of heart rate / regulation of heart rate by cardiac conduction / positive regulation of insulin secretion involved in cellular response to glucose stimulus / protein sumoylation / positive regulation of fat cell differentiation / negative regulation of osteoblast differentiation / positive regulation of vasoconstriction / positive regulation of adipose tissue development / calcium-mediated signaling / calcium ion transmembrane transport / Sensory perception of sweet, bitter, and umami (glutamate) taste / positive regulation of canonical Wnt signaling pathway / positive regulation of cytosolic calcium ion concentration / protein homotetramerization / adaptive immune response / calmodulin binding / neuronal cell body / calcium ion binding / positive regulation of cell population proliferation / Golgi apparatus / endoplasmic reticulum / nucleoplasm / ATP binding / membrane / identical protein binding / plasma membrane / cytosol
Similarity search - Function
TRPM, SLOG domain / SLOG in TRPM / Ion transport domain / Ion transport protein
Similarity search - Domain/homology
Transient receptor potential cation channel subfamily M member 4
Similarity search - Component
Biological speciesHomo sapiens (human)
Methodsingle particle reconstruction / cryo EM / Resolution: 3.5 Å
AuthorsHu J / Lu W / Du J
Funding support United States, 9 items
OrganizationGrant numberCountry
National Institutes of Health/National Heart, Lung, and Blood Institute (NIH/NHLBI)R01HL153219 United States
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)R01NS112363 United States
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)R01NS111031 United States
National Institutes of Health/National Institute of Neurological Disorders and Stroke (NIH/NINDS)R01NS129804 United States
McKnight FoundationMcKnight Scholar Award United States
Simons FoundationKlingenstein-Simon Scholar United States
Other privateSloan Research Fellowship United States
The Pew Charitable TrustsPew Scholar United States
American Heart Association24POST1196982 United States
CitationJournal: Nature / Year: 2024
Title: Physiological temperature drives TRPM4 ligand recognition and gating.
Authors: Jinhong Hu / Sung Jin Park / Tyler Walter / Ian J Orozco / Garrett O'Dea / Xinyu Ye / Juan Du / Wei Lü /
Abstract: Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity. However, its impact is often overlooked in biophysical studies that are typically ...Temperature profoundly affects macromolecular function, particularly in proteins with temperature sensitivity. However, its impact is often overlooked in biophysical studies that are typically performed at non-physiological temperatures, potentially leading to inaccurate mechanistic and pharmacological insights. Here we demonstrate temperature-dependent changes in the structure and function of TRPM4, a temperature-sensitive Ca-activated ion channel. By studying TRPM4 prepared at physiological temperature using single-particle cryo-electron microscopy, we identified a 'warm' conformation that is distinct from those observed at lower temperatures. This conformation is driven by a temperature-dependent Ca-binding site in the intracellular domain, and is essential for TRPM4 function in physiological contexts. We demonstrated that ligands, exemplified by decavanadate (a positive modulator) and ATP (an inhibitor), bind to different locations of TRPM4 at physiological temperatures than at lower temperatures, and that these sites have bona fide functional relevance. We elucidated the TRPM4 gating mechanism by capturing structural snapshots of its different functional states at physiological temperatures, revealing the channel opening that is not observed at lower temperatures. Our study provides an example of temperature-dependent ligand recognition and modulation of an ion channel, underscoring the importance of studying macromolecules at physiological temperatures. It also provides a potential molecular framework for deciphering how thermosensitive TRPM channels perceive temperature changes.
History
DepositionApr 1, 2024-
Header (metadata) releaseMay 15, 2024-
Map releaseMay 15, 2024-
UpdateMay 29, 2024-
Current statusMay 29, 2024Processing site: RCSB / Status: Released

-
Structure visualization

Supplemental images

Downloads & links

-
Map

FileDownload / File: emd_44366.map.gz / Format: CCP4 / Size: 216 MB / Type: IMAGE STORED AS FLOATING POINT NUMBER (4 BYTES)
Voxel sizeX=Y=Z: 0.828 Å
Density
Contour LevelBy AUTHOR: 0.014
Minimum - Maximum-0.017420232 - 0.041577637
Average (Standard dev.)0.00010189913 (±0.0021776424)
SymmetrySpace group: 1
Details

EMDB XML:

Map geometry
Axis orderXYZ
Origin000
Dimensions384384384
Spacing384384384
CellA=B=C: 317.952 Å
α=β=γ: 90.0 °

-
Supplemental data

-
Additional map: #1

Fileemd_44366_additional_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: #2

Fileemd_44366_half_map_1.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Half map: #1

Fileemd_44366_half_map_2.map
Projections & Slices
AxesZYX

Projections

Slices (1/2)
Density Histograms

-
Sample components

-
Entire : human TRPM4 in complex with calcium at 18 degrees Celsius

EntireName: human TRPM4 in complex with calcium at 18 degrees Celsius
Components
  • Complex: human TRPM4 in complex with calcium at 18 degrees Celsius
    • Protein or peptide: Transient receptor potential cation channel subfamily M member 4
  • Ligand: CALCIUM IONCalcium

-
Supramolecule #1: human TRPM4 in complex with calcium at 18 degrees Celsius

SupramoleculeName: human TRPM4 in complex with calcium at 18 degrees Celsius
type: complex / ID: 1 / Parent: 0 / Macromolecule list: #1
Source (natural)Organism: Homo sapiens (human)

-
Macromolecule #1: Transient receptor potential cation channel subfamily M member 4

MacromoleculeName: Transient receptor potential cation channel subfamily M member 4
type: protein_or_peptide / ID: 1 / Number of copies: 4 / Enantiomer: LEVO
Source (natural)Organism: Homo sapiens (human)
Molecular weightTheoretical: 134.456484 KDa
Recombinant expressionOrganism: Mammalia (mammals)
SequenceString: MVVPEKEQSW IPKIFKKKTC TTFIVDSTDP GGTLCQCGRP RTAHPAVAME DAFGAAVVTV WDSDAHTTEK PTDAYGELDF TGAGRKHSN FLRLSDRTDP AAVYSLVTRT WGFRAPNLVV SVLGGSGGPV LQTWLQDLLR RGLVRAAQST GAWIVTGGLH T GIGRHVGV ...String:
MVVPEKEQSW IPKIFKKKTC TTFIVDSTDP GGTLCQCGRP RTAHPAVAME DAFGAAVVTV WDSDAHTTEK PTDAYGELDF TGAGRKHSN FLRLSDRTDP AAVYSLVTRT WGFRAPNLVV SVLGGSGGPV LQTWLQDLLR RGLVRAAQST GAWIVTGGLH T GIGRHVGV AVRDHQMAST GGTKVVAMGV APWGVVRNRD TLINPKGSFP ARYRWRGDPE DGVQFPLDYN YSAFFLVDDG TH GCLGGEN RFRLRLESYI SQQKTGVGGT GIDIPVLLLL IDGDEKMLTR IENATQAQLP CLLVAGSGGA ADCLAETLED TLA PGSGGA RQGEARDRIR RFFPKGDLEV LQAQVERIMT RKELLTVYSS EDGSEEFETI VLKALVKACG SSEASAYLDE LRLA VAWNR VDIAQSELFR GDIQWRSFHL EASLMDALLN DRPEFVRLLI SHGLSLGHFL TPMRLAQLYS AAPSNSLIRN LLDQA SHSA GTKAPALKGG AAELRPPDVG HVLRMLLGKM CAPRYPSGGA WDPHPGQGFG ESMYLLSDKA TSPLSLDAGL GQAPWS DLL LWALLLNRAQ MAMYFWEMGS NAVSSALGAC LLLRVMARLE PDAEEAARRK DLAFKFEGMG VDLFGECYRS SEVRAAR LL LRRCPLWGDA TCLQLAMQAD ARAFFAQDGV QSLLTQKWWG DMASTTPIWA LVLAFFCPPL IYTRLITFRK SEEEPTRE E LEFDMDSVIN GEGPVGTADP AEKTPLGVPR QSGRPGCCGG RCGGRRCLRR WFHFWGAPVT IFMGNVVSYL LFLLLFSRV LLVDFQPAPP GSLELLLYFW AFTLLCEELR QGLSGGGGSL ASGGPGPGHA SLSQRLRLYL ADSWNQCDLV ALTCFLLGVG CRLTPGLYH LGRTVLCIDF MVFTVRLLHI FTVNKQLGPK IVIVSKMMKD VFFFLFFLGV WLVAYGVATE GLLRPRDSDF P SILRRVFY RPYLQIFGQI PQEDMDVALM EHSNCSSEPG FWAHPPGAQA GTCVSQYANW LVVLLLVIFL LVANILLVNL LI AMFSYTF GKVQGNSDLY WKAQRYRLIR EFHSRPALAP PFIVISHLRL LLRQLCRRPR SPQPSSPALE HFRVYLSKEA ERK LLTWES VHKENFLLAR ARDKRESDSE RLKRTSQKVD LALKQLGHIR EYEQRLKVLE REVQQCSRVL GWVAEALSRS ALLP PGGPP PPDLPGSKD

UniProtKB: Transient receptor potential cation channel subfamily M member 4

-
Macromolecule #2: CALCIUM ION

MacromoleculeName: CALCIUM ION / type: ligand / ID: 2 / Number of copies: 4 / Formula: CA
Molecular weightTheoretical: 40.078 Da

-
Experimental details

-
Structure determination

Methodcryo EM
Processingsingle particle reconstruction
Aggregation stateparticle

-
Sample preparation

BufferpH: 8
VitrificationCryogen name: ETHANE

-
Electron microscopy

MicroscopeFEI TITAN KRIOS
Electron beamAcceleration voltage: 300 kV / Electron source: FIELD EMISSION GUN
Electron opticsIllumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELDBright-field microscopy / Nominal defocus max: 1.9000000000000001 µm / Nominal defocus min: 1.2 µm
Image recordingFilm or detector model: GATAN K3 (6k x 4k) / Average electron dose: 50.0 e/Å2
Experimental equipment
Model: Titan Krios / Image courtesy: FEI Company

-
Image processing

Startup modelType of model: NONE
Initial angle assignmentType: MAXIMUM LIKELIHOOD
Final angle assignmentType: MAXIMUM LIKELIHOOD
Final reconstructionResolution.type: BY AUTHOR / Resolution: 3.5 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 301000

+
About Yorodumi

-
News

-
Feb 9, 2022. New format data for meta-information of EMDB entries

New format data for meta-information of EMDB entries

  • Version 3 of the EMDB header file is now the official format.
  • The previous official version 1.9 will be removed from the archive.

Related info.:EMDB header

External links:wwPDB to switch to version 3 of the EMDB data model

-
Aug 12, 2020. Covid-19 info

Covid-19 info

URL: https://pdbj.org/emnavi/covid19.php

New page: Covid-19 featured information page in EM Navigator.

Related info.:Covid-19 info / Mar 5, 2020. Novel coronavirus structure data

+
Mar 5, 2020. Novel coronavirus structure data

Novel coronavirus structure data

Related info.:Yorodumi Speices / Aug 12, 2020. Covid-19 info

External links:COVID-19 featured content - PDBj / Molecule of the Month (242):Coronavirus Proteases

+
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)

EMDB accession codes are about to change! (news from PDBe EMDB page)

  • The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
  • The EM Navigator/Yorodumi systems omit the EMD- prefix.

Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator

External links:EMDB Accession Codes are Changing Soon! / Contact to PDBj

+
Jul 12, 2017. Major update of PDB

Major update of PDB

  • wwPDB released updated PDB data conforming to the new PDBx/mmCIF dictionary.
  • This is a major update changing the version number from 4 to 5, and with Remediation, in which all the entries are updated.
  • In this update, many items about electron microscopy experimental information are reorganized (e.g. em_software).
  • Now, EM Navigator and Yorodumi are based on the updated data.

External links:wwPDB Remediation / Enriched Model Files Conforming to OneDep Data Standards Now Available in the PDB FTP Archive

-
Yorodumi

Thousand views of thousand structures

  • Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
  • This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
  • The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.

Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi

Read more