National Institutes of Health/National Institute on Aging (NIH/NIA)
1R01AG070895
米国
National Institutes of Health/National Institute on Aging (NIH/NIA)
RF1AG065407
米国
Department of Energy (DOE, United States)
DOE-FC02-02ERG
米国
引用
ジャーナル: bioRxiv / 年: 2024 タイトル: How short peptides can disassemble ultra-stable tau fibrils extracted from Alzheimer's disease brain by a strain-relief mechanism. 著者: Ke Hou / Peng Ge / Michael R Sawaya / Joshua L Dolinsky / Yuan Yang / Yi Xiao Jiang / Liisa Lutter / David R Boyer / Xinyi Cheng / Justin Pi / Jeffrey Zhang / Jiahui Lu / Shixin Yang / ...著者: Ke Hou / Peng Ge / Michael R Sawaya / Joshua L Dolinsky / Yuan Yang / Yi Xiao Jiang / Liisa Lutter / David R Boyer / Xinyi Cheng / Justin Pi / Jeffrey Zhang / Jiahui Lu / Shixin Yang / Zhiheng Yu / Juli Feigon / David S Eisenberg 要旨: Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's disease (AD). Previously we found that the D-peptide D-TLKIVWC disassembles tau fibrils from ...Reducing fibrous aggregates of protein tau is a possible strategy for halting progression of Alzheimer's disease (AD). Previously we found that the D-peptide D-TLKIVWC disassembles tau fibrils from AD brains (AD-tau) into benign segments with no energy source present beyond ambient thermal agitation. This disassembly by a short peptide was unexpected, given that AD-tau is sufficiently stable to withstand disassembly in boiling SDS detergent. To consider D peptide-mediated disassembly as a potential therapeutic for AD, it is essential to understand the mechanism and energy source of the disassembly action. We find assembly of D-peptides into amyloid-like fibrils is essential for tau fibril disassembly. Cryo-EM and atomic force microscopy reveal that these D-peptide fibrils have a right-handed twist and embrace tau fibrils which have a left-handed twist. In binding to the AD-tau fibril, the oppositely twisted D-peptide fibril produces a strain, which is relieved by disassembly of both fibrils. This strain-relief mechanism appears to operate in other examples of amyloid fibril disassembly and provides a new direction for the development of first-in-class therapeutics for amyloid diseases.