- EMDB-44016: In situ human ribosome (Focused on 40S with SERBP1 CTD) -
+
Open data
ID or keywords:
Loading...
-
Basic information
Entry
Database: EMDB / ID: EMD-44016
Title
In situ human ribosome (Focused on 40S with SERBP1 CTD)
Map data
Sample
Complex: In situ human ribosome (Focused on 40S with SERBP1 CTD)
Protein or peptide: x 15 types
RNA: x 1 types
Keywords
In situ / RIBOSOME
Function / homology
Function and homology information
negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / protein tyrosine kinase inhibitor activity / IRE1-RACK1-PP2A complex / positive regulation of endodeoxyribonuclease activity ...negative regulation of endoplasmic reticulum unfolded protein response / oxidized pyrimidine DNA binding / response to TNF agonist / positive regulation of base-excision repair / positive regulation of respiratory burst involved in inflammatory response / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage / positive regulation of gastrulation / protein tyrosine kinase inhibitor activity / IRE1-RACK1-PP2A complex / positive regulation of endodeoxyribonuclease activity / nucleolus organization / positive regulation of Golgi to plasma membrane protein transport / TNFR1-mediated ceramide production / negative regulation of DNA repair / supercoiled DNA binding / NF-kappaB complex / cysteine-type endopeptidase activator activity involved in apoptotic process / oxidized purine DNA binding / negative regulation of intrinsic apoptotic signaling pathway in response to hydrogen peroxide / ubiquitin-like protein conjugating enzyme binding / regulation of establishment of cell polarity / negative regulation of phagocytosis / Formation of the ternary complex, and subsequently, the 43S complex / cytoplasmic side of rough endoplasmic reticulum membrane / protein kinase A binding / ion channel inhibitor activity / pigmentation / Ribosomal scanning and start codon recognition / Translation initiation complex formation / positive regulation of mitochondrial depolarization / positive regulation of T cell receptor signaling pathway / fibroblast growth factor binding / negative regulation of Wnt signaling pathway / monocyte chemotaxis / positive regulation of activated T cell proliferation / negative regulation of translational frameshifting / BH3 domain binding / regulation of cell division / SARS-CoV-1 modulates host translation machinery / regulation of adenylate cyclase-activating G protein-coupled receptor signaling pathway / iron-sulfur cluster binding / Peptide chain elongation / Selenocysteine synthesis / Formation of a pool of free 40S subunits / Eukaryotic Translation Termination / ubiquitin ligase inhibitor activity / Response of EIF2AK4 (GCN2) to amino acid deficiency / positive regulation of signal transduction by p53 class mediator / SRP-dependent cotranslational protein targeting to membrane / protein serine/threonine kinase inhibitor activity / Viral mRNA Translation / negative regulation of respiratory burst involved in inflammatory response / Maturation of protein E / Maturation of protein E / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / GTP hydrolysis and joining of the 60S ribosomal subunit / ER Quality Control Compartment (ERQC) / Myoclonic epilepsy of Lafora / FLT3 signaling by CBL mutants / Prevention of phagosomal-lysosomal fusion / L13a-mediated translational silencing of Ceruloplasmin expression / IRAK2 mediated activation of TAK1 complex / Alpha-protein kinase 1 signaling pathway / Glycogen synthesis / IRAK1 recruits IKK complex / IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation / Membrane binding and targetting of GAG proteins / Endosomal Sorting Complex Required For Transport (ESCRT) / Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 / Negative regulation of FLT3 / PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 / Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation / Constitutive Signaling by NOTCH1 HD Domain Mutants / IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation / NOTCH2 Activation and Transmission of Signal to the Nucleus / Major pathway of rRNA processing in the nucleolus and cytosol / TICAM1,TRAF6-dependent induction of TAK1 complex / phagocytic cup / TICAM1-dependent activation of IRF3/IRF7 / APC/C:Cdc20 mediated degradation of Cyclin B / regulation of translational fidelity / Regulation of FZD by ubiquitination / Downregulation of ERBB4 signaling / p75NTR recruits signalling complexes / APC-Cdc20 mediated degradation of Nek2A / InlA-mediated entry of Listeria monocytogenes into host cells / Regulation of pyruvate metabolism / TRAF6-mediated induction of TAK1 complex within TLR4 complex / TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling / Regulation of innate immune responses to cytosolic DNA / NF-kB is activated and signals survival / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / Downregulation of ERBB2:ERBB3 signaling / NRIF signals cell death from the nucleus / Pexophagy / VLDLR internalisation and degradation / spindle assembly / Regulation of PTEN localization / Activated NOTCH1 Transmits Signal to the Nucleus / positive regulation of intrinsic apoptotic signaling pathway Similarity search - Function
: / Ribosomal protein S12e signature. / Ribosomal protein S12e / Ribosomal protein S19e, conserved site / Ribosomal protein S19e signature. / Small (40S) ribosomal subunit Asc1/RACK1 / S27a-like superfamily / 40S Ribosomal protein S10 / Plectin/S10, N-terminal / Plectin/S10 domain ...: / Ribosomal protein S12e signature. / Ribosomal protein S12e / Ribosomal protein S19e, conserved site / Ribosomal protein S19e signature. / Small (40S) ribosomal subunit Asc1/RACK1 / S27a-like superfamily / 40S Ribosomal protein S10 / Plectin/S10, N-terminal / Plectin/S10 domain / Ribosomal protein S10, eukaryotic/archaeal / Ribosomal protein S25 / S25 ribosomal protein / Ribosomal protein S27a / Ribosomal protein S27a / Ribosomal protein S27a / 40S ribosomal protein S29/30S ribosomal protein S14 type Z / Ribosomal protein S3, eukaryotic/archaeal / Ribosomal protein S19e / Ribosomal protein S19e / Ribosomal_S19e / Ribosomal protein S19A/S15e / Ribosomal protein S28e conserved site / Ribosomal protein S28e signature. / Ribosomal protein S28e / Ribosomal protein S28e / Ribosomal protein S5/S7, eukaryotic/archaeal / Ribosomal protein L7Ae/L30e/S12e/Gadd45 / Ribosomal protein S14/S29 / : / Ribosomal protein L7Ae/L30e/S12e/Gadd45 family / Ubiquitin domain / Ubiquitin domain signature. / Ubiquitin conserved site / 50S ribosomal protein L30e-like / Ribosomal protein S3, conserved site / Ribosomal protein S3 signature. / Ribosomal protein S10, conserved site / Ribosomal protein S10 signature. / Ribosomal protein S14, conserved site / Ribosomal protein S14 signature. / Ubiquitin family / Ubiquitin homologues / KH domain / Type-2 KH domain profile. / K Homology domain, type 2 / Ubiquitin domain profile. / Ribosomal protein S3, C-terminal / Ribosomal protein S3, C-terminal domain / Ribosomal protein S3, C-terminal domain superfamily / Ribosomal protein S15/S19, conserved site / Ribosomal protein S19 signature. / Ribosomal protein S10 / Ubiquitin-like domain / Ribosomal protein S19/S15 / Ribosomal protein S19/S15, superfamily / Ribosomal protein S19 / Ribosomal protein S7, conserved site / Ribosomal protein S7 signature. / K homology domain superfamily, prokaryotic type / Ribosomal protein S13, conserved site / Ribosomal protein S13 signature. / Ribosomal protein S13 / 30s ribosomal protein S13, C-terminal / Ribosomal protein S13/S18 / Ribosomal protein S13 family profile. / Ribosomal protein S14 / Ribosomal protein S14p/S29e / K homology domain-like, alpha/beta / Ribosomal protein S13-like, H2TH / Ribosomal protein S9, conserved site / Ribosomal protein S9 signature. / Ribosomal protein S10p/S20e / Ribosomal protein S10 domain / Ribosomal protein S10 domain superfamily / Ribosomal protein S10p/S20e / Ribosomal protein S5/S7 / Ribosomal protein S7 domain / Ribosomal protein S7 domain superfamily / Ribosomal protein S7p/S5e / Ribosomal protein S9 / Ribosomal protein S9/S16 / WD domain, G-beta repeat / Zinc-binding ribosomal protein / Ribosomal protein S5 domain 2-type fold, subgroup / Ubiquitin-like domain superfamily / G-protein beta WD-40 repeat / Winged helix DNA-binding domain superfamily / Ribosomal protein S5 domain 2-type fold / WD40 repeat, conserved site / Trp-Asp (WD) repeats signature. / Trp-Asp (WD) repeats profile. / Trp-Asp (WD) repeats circular profile. / WD40 repeats / WD40 repeat / WD40-repeat-containing domain superfamily / Winged helix-like DNA-binding domain superfamily / WD40/YVTN repeat-like-containing domain superfamily / Nucleic acid-binding, OB-fold Similarity search - Domain/homology
Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Small ribosomal subunit protein eS19 / Small ribosomal subunit protein uS7 / Small ribosomal subunit protein eS10 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein uS9 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS19 ...Small ribosomal subunit protein uS3 / Small ribosomal subunit protein eS12 / Small ribosomal subunit protein eS19 / Small ribosomal subunit protein uS7 / Small ribosomal subunit protein eS10 / Small ribosomal subunit protein uS10 / Small ribosomal subunit protein uS9 / Small ribosomal subunit protein uS13 / Small ribosomal subunit protein uS14 / Small ribosomal subunit protein uS19 / Small ribosomal subunit protein eS25 / Small ribosomal subunit protein eS28 / Ubiquitin-ribosomal protein eS31 fusion protein / Small ribosomal subunit protein RACK1 Similarity search - Component
Biological species
Homo sapiens (human)
Method
single particle reconstruction / cryo EM / Resolution: 2.68 Å
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi