NELF complex / positive regulation of protein modification process / NTRK3 as a dependence receptor / negative regulation of DNA-templated transcription, elongation / DSIF complex / regulation of transcription elongation by RNA polymerase II / B-WICH complex positively regulates rRNA expression / RNA Polymerase I Transcription Initiation / RNA Polymerase I Promoter Escape / RNA Polymerase I Transcription Termination ...NELF complex / positive regulation of protein modification process / NTRK3 as a dependence receptor / negative regulation of DNA-templated transcription, elongation / DSIF complex / regulation of transcription elongation by RNA polymerase II / B-WICH complex positively regulates rRNA expression / RNA Polymerase I Transcription Initiation / RNA Polymerase I Promoter Escape / RNA Polymerase I Transcription Termination / RNA Polymerase III Transcription Initiation From Type 1 Promoter / RNA Polymerase III Transcription Initiation From Type 2 Promoter / RNA Polymerase III Transcription Initiation From Type 3 Promoter / Formation of RNA Pol II elongation complex / Formation of the Early Elongation Complex / Transcriptional regulation by small RNAs / RNA Polymerase II Pre-transcription Events / TP53 Regulates Transcription of DNA Repair Genes / FGFR2 alternative splicing / RNA polymerase II transcribes snRNA genes / mRNA Capping / mRNA Splicing - Minor Pathway / Processing of Capped Intron-Containing Pre-mRNA / RNA Polymerase II Promoter Escape / RNA Polymerase II Transcription Pre-Initiation And Promoter Opening / RNA Polymerase II Transcription Initiation / RNA Polymerase II Transcription Elongation / RNA Polymerase II Transcription Initiation And Promoter Clearance / RNA Pol II CTD phosphorylation and interaction with CE / Estrogen-dependent gene expression / Formation of TC-NER Pre-Incision Complex / Dual incision in TC-NER / Gap-filling DNA repair synthesis and ligation in TC-NER / mRNA Splicing - Major Pathway / negative regulation of stem cell differentiation / positive regulation of DNA-templated transcription, elongation / Abortive elongation of HIV-1 transcript in the absence of Tat / transcription elongation-coupled chromatin remodeling / RNA Pol II CTD phosphorylation and interaction with CE during HIV infection / RNA Pol II CTD phosphorylation and interaction with CE / Formation of the Early Elongation Complex / Formation of the HIV-1 Early Elongation Complex / mRNA Capping / RNA polymerase III activity / maintenance of transcriptional fidelity during transcription elongation by RNA polymerase II / negative regulation of transcription elongation by RNA polymerase II / Pausing and recovery of Tat-mediated HIV elongation / Tat-mediated HIV elongation arrest and recovery / positive regulation of macroautophagy / positive regulation of nuclear-transcribed mRNA poly(A) tail shortening / HIV elongation arrest and recovery / Pausing and recovery of HIV elongation / RNA polymerase II transcribes snRNA genes / RNA polymerase II activity / Tat-mediated elongation of the HIV-1 transcript / Formation of HIV-1 elongation complex containing HIV-1 Tat / transcription-coupled nucleotide-excision repair / RNA polymerase I activity / RNA polymerase I complex / RNA polymerase III complex / positive regulation of translational initiation / Formation of HIV elongation complex in the absence of HIV Tat / RNA polymerase II, core complex / RNA Polymerase II Transcription Elongation / Formation of RNA Pol II elongation complex / DNA-directed RNA polymerase complex / RNA Polymerase II Pre-transcription Events / translation initiation factor binding / stem cell differentiation / TP53 Regulates Transcription of DNA Repair Genes / transcription initiation at RNA polymerase II promoter / transcription elongation by RNA polymerase II / P-body / ribonucleoside binding / fibrillar center / DNA-directed 5'-3' RNA polymerase activity / DNA-directed RNA polymerase / single-stranded DNA binding / transcription by RNA polymerase II / cell population proliferation / nucleic acid binding / molecular adaptor activity / positive regulation of ERK1 and ERK2 cascade / single-stranded RNA binding / nuclear body / protein dimerization activity / protein heterodimerization activity / mRNA binding / nucleotide binding / DNA-templated transcription / chromatin binding / chromatin / nucleolus / negative regulation of transcription by RNA polymerase II / enzyme binding / positive regulation of transcription by RNA polymerase II / DNA binding / RNA binding / zinc ion binding / nucleoplasm 類似検索 - 分子機能
DNA-directed RNA polymerase II subunit RPB3 / RNA polymerase II, I and III subunit K / DNA-directed RNA polymerase subunit beta / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerase II subunit E / RNA polymerase Rpb4/RPC9 core domain-containing protein / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerases I, II, and III subunit RPABC5 ...DNA-directed RNA polymerase II subunit RPB3 / RNA polymerase II, I and III subunit K / DNA-directed RNA polymerase subunit beta / DNA-directed RNA polymerases I, II, and III subunit RPABC2 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerase II subunit E / RNA polymerase Rpb4/RPC9 core domain-containing protein / DNA-directed RNA polymerases I, II, and III subunit RPABC3 / DNA-directed RNA polymerase subunit / DNA-directed RNA polymerases I, II, and III subunit RPABC5 / DNA-directed RNA polymerase II subunit RPB11-a / Transcription elongation factor SPT5 / Negative elongation factor E / DNA-directed RNA polymerase II subunit RPB9 / Negative elongation factor C/D / Negative elongation factor B / Negative elongation factor A 類似検索 - 構成要素
生物種
Sus scrofa (ブタ) / Homo sapiens (ヒト) / synthetic construct (人工物)
National Institutes of Health/National Institute of General Medical Sciences (NIH/NIGMS)
DP2-GM146254
米国
引用
ジャーナル: Mol Cell / 年: 2024 タイトル: Distinct negative elongation factor conformations regulate RNA polymerase II promoter-proximal pausing. 著者: Bonnie G Su / Seychelle M Vos / 要旨: Metazoan gene expression regulation involves pausing of RNA polymerase (Pol II) in the promoter-proximal region of genes and is stabilized by DSIF and NELF. Upon depletion of elongation factors, NELF ...Metazoan gene expression regulation involves pausing of RNA polymerase (Pol II) in the promoter-proximal region of genes and is stabilized by DSIF and NELF. Upon depletion of elongation factors, NELF appears to accompany elongating Pol II past pause sites; however, prior work indicates that NELF prevents Pol II elongation. Here, we report cryoelectron microscopy structures of Pol II-DSIF-NELF complexes with NELF in two distinct conformations corresponding to paused and poised states. The paused NELF state supports Pol II stalling, whereas the poised NELF state enables transcription elongation as it does not support a tilted RNA-DNA hybrid. Further, the poised NELF state can accommodate TFIIS binding to Pol II, allowing for Pol II reactivation at paused or backtracking sites. Finally, we observe that the NELF-A tentacle interacts with the RPB2 protrusion and is necessary for pausing. Our results define how NELF can support pausing, reactivation, and elongation by Pol II.