+
Open data
-
Basic information
Entry | ![]() | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Title | Vo domain of V/A-ATPase from Thermus thermophilus state2 | |||||||||||||||
![]() | ||||||||||||||||
![]() |
| |||||||||||||||
![]() | V/A-ATPase / ATP synthase / MOTOR PROTEIN | |||||||||||||||
Function / homology | ![]() proton-transporting V-type ATPase, V0 domain / vacuolar proton-transporting V-type ATPase complex / vacuolar acidification / proton motive force-driven plasma membrane ATP synthesis / proton-transporting ATPase activity, rotational mechanism / proton-transporting ATP synthase activity, rotational mechanism / ATPase binding / ATP binding Similarity search - Function | |||||||||||||||
Biological species | ![]() ![]() | |||||||||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.6 Å | |||||||||||||||
![]() | Kishikawa J / Nishida Y / Nakano A / Yokoyama K | |||||||||||||||
Funding support | ![]()
| |||||||||||||||
![]() | ![]() Title: Rotary mechanism of the prokaryotic V motor driven by proton motive force. Authors: Jun-Ichi Kishikawa / Yui Nishida / Atsuki Nakano / Takayuki Kato / Kaoru Mitsuoka / Kei-Ichi Okazaki / Ken Yokoyama / ![]() Abstract: ATP synthases play a crucial role in energy production by utilizing the proton motive force (pmf) across the membrane to rotate their membrane-embedded rotor c-ring, and thus driving ATP synthesis in ...ATP synthases play a crucial role in energy production by utilizing the proton motive force (pmf) across the membrane to rotate their membrane-embedded rotor c-ring, and thus driving ATP synthesis in the hydrophilic catalytic hexamer. However, the mechanism of how pmf converts into c-ring rotation remains unclear. This study presents a 2.8 Å cryo-EM structure of the V domain of V/A-ATPase from Thermus thermophilus, revealing precise orientations of glutamate (Glu) residues in the c-ring. Three Glu residues face a water channel, with one forming a salt bridge with the Arginine in the stator (a/Arg). Molecular dynamics (MD) simulations show that protonation of specific Glu residues triggers unidirectional Brownian motion of the c-ring towards ATP synthesis. When the key Glu remains unprotonated, the salt bridge persists, blocking rotation. These findings suggest that asymmetry in the protonation of c/Glu residues biases c-ring movement, facilitating rotation and ATP synthesis. | |||||||||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 193.2 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 21.2 KB 21.2 KB | Display Display | ![]() |
FSC (resolution estimation) | ![]() | 14.2 KB | Display | ![]() |
Images | ![]() | 86.9 KB | ||
Masks | ![]() | 244.1 MB | ![]() | |
Filedesc metadata | ![]() | 6.3 KB | ||
Others | ![]() ![]() ![]() | 194.3 MB 193.8 MB 193.8 MB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 8yy0MC ![]() 8ywtC ![]() 8yxzC ![]() 8yy1C M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 0.88 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-Mask #1
File | ![]() | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Additional map: #1
File | emd_39662_additional_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #2
File | emd_39662_half_map_1.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-Half map: #1
File | emd_39662_half_map_2.map | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Projections & Slices |
| ||||||||||||
Density Histograms |
-
Sample components
-Entire : Vo domain of V/A-ATPase from thermus thermophilus.
Entire | Name: Vo domain of V/A-ATPase from thermus thermophilus. |
---|---|
Components |
|
-Supramolecule #1: Vo domain of V/A-ATPase from thermus thermophilus.
Supramolecule | Name: Vo domain of V/A-ATPase from thermus thermophilus. / type: complex / ID: 1 / Parent: 0 / Macromolecule list: all |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 300 KDa |
-Macromolecule #1: V-type ATP synthase subunit C
Macromolecule | Name: V-type ATP synthase subunit C / type: protein_or_peptide / ID: 1 / Number of copies: 1 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 35.96857 KDa |
Recombinant expression | Organism: ![]() ![]() |
Sequence | String: MADDFAYLNA RVRVRRGTLL KESFFQEALD LSFADFLRLL SETVYGGELA GQGLPDVDRA VLRTQAKLVG DLPRLVTGEA REAVRLLLL RNDLHNLQAL LRAKATGRPF EEVLLLPGTL REEVWRQAYE AQDPAGMAQV LAVPGHPLAR ALRAVLRETQ D LARVEALL ...String: MADDFAYLNA RVRVRRGTLL KESFFQEALD LSFADFLRLL SETVYGGELA GQGLPDVDRA VLRTQAKLVG DLPRLVTGEA REAVRLLLL RNDLHNLQAL LRAKATGRPF EEVLLLPGTL REEVWRQAYE AQDPAGMAQV LAVPGHPLAR ALRAVLRETQ D LARVEALL AKRFFEDVAK AAKGLDQPAL RDYLALEVDA ENLRTAFKLQ GSGLAPDAFF LKGGRFVDRV RFARLMEGDY AV LDELSGT PFSGLSGVRD LKALERGLRC VLLKEAKKGV QDPLGVGLVL AYVKEREWEA VRLRLLARRA YFGLPRAQVE EEV VCP UniProtKB: V-type ATP synthase subunit C |
-Macromolecule #2: V-type ATP synthase subunit I
Macromolecule | Name: V-type ATP synthase subunit I / type: protein_or_peptide / ID: 2 / Number of copies: 1 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 72.204289 KDa |
Recombinant expression | Organism: ![]() ![]() |
Sequence | String: MIAPMEKLVL AGPKGRAKEL LQSLQQAGVV HLETLRPEAL SAYQLSPEER AELRRWEAVS AGAEHTLSLL GLEAEPARPF PEGLEAAEK ALSPIQAHAE GLTRQKQELE EELALAQAYL EPLERLAALA HGLDKSPFLR VIPFLLTEKE LPLVEEALRK A LEDRYLLA ...String: MIAPMEKLVL AGPKGRAKEL LQSLQQAGVV HLETLRPEAL SAYQLSPEER AELRRWEAVS AGAEHTLSLL GLEAEPARPF PEGLEAAEK ALSPIQAHAE GLTRQKQELE EELALAQAYL EPLERLAALA HGLDKSPFLR VIPFLLTEKE LPLVEEALRK A LEDRYLLA HEAYAGGVAA LVVVHRKEVD QAKAALSRAG VAELRLPGAL GELPLSEAAR RLKERAEAAP RELSEVRQHL AK LARESAS TLQSLWTRAQ DEVARLKALE ELASGRFGFA LLGYVPVKAK PKVEEALARH KESVVYAFEP VDEHHEADRI PVV LDNPPW AKPFELLVSF LNTPKYGTFD PTPVVPVFFP FWFGMIVGDI GYALLFYLVG RWLSGYVKRN EPLVIDLFAL KLKP QVIGK LVHILNWMVF WTVVWGVIYG EFFGTFLEHL GVFGTPEHPG LIPILIHRID TAKTANLLIL LSVAFGVVLV FFGLA LRAY LGLKHRHMAH FWEGVGYLGG LVGVLALAAS YLGNLQAGWL QGLMYLGFGV FLLAVLMSRI WLMIPEIFTQ AGHILS HIR IYAVGAAGGI LAGLLTDVGF ALAERLGLLG VLLGLLVAGV LHLLILLLTT LGHMLQPIRL LWVEFFTKFG FYEENGR PY RPFKSVREAQ UniProtKB: V-type ATP synthase subunit I |
-Macromolecule #3: V-type ATP synthase, subunit K
Macromolecule | Name: V-type ATP synthase, subunit K / type: protein_or_peptide / ID: 3 Details: 3 His residues on the c-terminal are purification tag. Number of copies: 12 / Enantiomer: LEVO |
---|---|
Source (natural) | Organism: ![]() ![]() |
Molecular weight | Theoretical: 10.256154 KDa |
Recombinant expression | Organism: ![]() ![]() |
Sequence | String: MKKLLVTVLL AVFGALAFAA EEAAASGGLD RGLIAVGMGL AVGLAALGTG VAQARIGAAG VGAIAEDRSN FGTALIFLLL PETLVIFGL LIAFILNGRL HHH UniProtKB: V-type ATP synthase, subunit K |
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 8 |
---|---|
Vitrification | Cryogen name: ETHANE / Chamber humidity: 100 % / Chamber temperature: 298 K |
-
Electron microscopy
Microscope | FEI TITAN KRIOS |
---|---|
Image recording | Film or detector model: GATAN K3 BIOQUANTUM (6k x 4k) / Average electron dose: 50.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Cs: 0.105 mm / Nominal defocus max: 2.0 µm / Nominal defocus min: 0.8 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |