National Natural Science Foundation of China (NSFC)
China
Citation
Journal: Nat Commun / Year: 2025 Title: Structural insights into the activation mechanism of the human zinc-activated channel. Authors: Xuhang Lu / Dongmei Li / Yaojie Wang / Gaohua Zhang / Tianlei Wen / Yue Lu / Nan Jia / Xuedi Wang / Shenghai Chang / Xing Zhang / Jianping Lin / Yu-Hang Chen / Xue Yang / Yuequan Shen / Abstract: The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands ...The zinc-activated channel (ZAC) is an atypical mammalian cys-loop receptor (CLR) that is activated by zinc ions and protons, allowing cations to pass through. The molecular mechanism that ligands use to activate ZAC remains elusive. Here, we present three cryo-electron microscopy reconstructions of human ZAC (hZAC) under different conditions. These three hZAC structures display highly similar conformations to one another, forming symmetrical homo-pentamers with a central ion-conduction pore. The hZAC protomer comprises an extracellular domain (ECD) and a transmembrane domain (TMD), sharing more structural similarity with anion-permeable CLRs, such as glycine receptors and type A γ-aminobutyric acid receptors. Notably, hZAC possesses a distinctive C-tail that establishes a disulfide bond with the loop M2-M3 in the TMD and occupies what is typically the canonical neurotransmitter orthosteric site in other mammalian CLRs. Moreover, the tip of the cys-loop creates an unprecedented orthosteric site in hZAC. The binding of Zn triggers a conformational shift in the cys-loop, which presumably prompts the loop M2-M3 to move and open the channel gate. This study sheds light on the assembly of the channel, its structural features, and the process of signal transduction in hZAC.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi