Journal: Commun Biol / Year: 2025 Title: Serine clamp of Clostridium perfringens binary toxin BECb (CPILEb)-pore confers cytotoxicity and enterotoxicity. Authors: Toru Yoshida / Chie Monma / Yuki Ninomiya / Sotaro Takiguchi / Shoko Fujita / Yuto Uchida / Noriaki Sakoda / Vladimir A Karginov / Jun-Ichi Kishikawa / Tomohito Yamada / Ryuji Kawano / Hideaki Tsuge / Abstract: BEC (CPILE) is a virulence factor of the pathogen, Clostridium perfringens, which has caused foodborne outbreaks in Japan. BEC is a binary toxin that comprises the enzymatic A-component (BECa) and ...BEC (CPILE) is a virulence factor of the pathogen, Clostridium perfringens, which has caused foodborne outbreaks in Japan. BEC is a binary toxin that comprises the enzymatic A-component (BECa) and the B-component (BECb); the latter forms a membrane pore to translocate the A-component into target cells. Although BEC differs from other binary toxins in that the B-component alone shows enterotoxic activity, the reason for this remains unclear. We focus on the narrowest region of BECb-pore formed by not phenylalanine residues conserved in other binary toxins including iota toxin B-component (Ib) but serine residues. Comparisons between BECb and BECb (S405F) where the serine residue forming the narrowest region is substituted to the phenylalanine residue reveal that the serine residue is responsible for both cytotoxicity and enterotoxic activity. Though attempts to prepare the BECb-pore were unsuccessful, we reveal the cryo-EM structure of Ib (F454S) where the phenylalanine residue forming the narrowest region is substituted to the serine residue as a surrogate of BECb. Furthermore, Ib (F454S) increases current conductance to nine times that of Ib due to the larger pore diameter and the hydrophilic nature. These results suggest that BECb functions as a pore-forming toxin and as a translocation channel for BECa.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi