embryonic brain development / eukaryotic 80S initiation complex / negative regulation of protein neddylation / negative regulation of formation of translation preinitiation complex / regulation of G1 to G0 transition / axial mesoderm development / ribosomal protein import into nucleus / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / regulation of translation involved in cellular response to UV / protein-DNA complex disassembly ...embryonic brain development / eukaryotic 80S initiation complex / negative regulation of protein neddylation / negative regulation of formation of translation preinitiation complex / regulation of G1 to G0 transition / axial mesoderm development / ribosomal protein import into nucleus / positive regulation of intrinsic apoptotic signaling pathway in response to DNA damage by p53 class mediator / regulation of translation involved in cellular response to UV / protein-DNA complex disassembly / 90S preribosome assembly / positive regulation of DNA damage response, signal transduction by p53 class mediator / GAIT complex / A band / TORC2 complex binding / alpha-beta T cell differentiation / G1 to G0 transition / middle ear morphogenesis / exit from mitosis / translation at presynapse / optic nerve development / cytoplasmic side of rough endoplasmic reticulum membrane / retinal ganglion cell axon guidance / negative regulation of ubiquitin protein ligase activity / homeostatic process / response to aldosterone / macrophage chemotaxis / lung morphogenesis / Protein hydroxylation / Peptide chain elongation / Selenocysteine synthesis / positive regulation of signal transduction by p53 class mediator / Formation of a pool of free 40S subunits / Eukaryotic Translation Termination / ubiquitin ligase inhibitor activity / Response of EIF2AK4 (GCN2) to amino acid deficiency / SRP-dependent cotranslational protein targeting to membrane / blastocyst development / cellular response to actinomycin D / negative regulation of ubiquitin-dependent protein catabolic process / Viral mRNA Translation / Nonsense Mediated Decay (NMD) independent of the Exon Junction Complex (EJC) / protein localization to nucleus / GTP hydrolysis and joining of the 60S ribosomal subunit / L13a-mediated translational silencing of Ceruloplasmin expression / Major pathway of rRNA processing in the nucleolus and cytosol / protein targeting / protein-RNA complex assembly / Nonsense Mediated Decay (NMD) enhanced by the Exon Junction Complex (EJC) / maturation of LSU-rRNA / rough endoplasmic reticulum / translation regulator activity / Maturation of protein E / negative regulation of proteasomal ubiquitin-dependent protein catabolic process / Maturation of protein E / MDM2/MDM4 family protein binding / cytosolic ribosome / ER Quality Control Compartment (ERQC) / Myoclonic epilepsy of Lafora / FLT3 signaling by CBL mutants / Prevention of phagosomal-lysosomal fusion / IRAK2 mediated activation of TAK1 complex / Alpha-protein kinase 1 signaling pathway / Glycogen synthesis / embryo implantation / IRAK1 recruits IKK complex / IRAK1 recruits IKK complex upon TLR7/8 or 9 stimulation / Membrane binding and targetting of GAG proteins / Endosomal Sorting Complex Required For Transport (ESCRT) / Regulation of TBK1, IKKε (IKBKE)-mediated activation of IRF3, IRF7 / Negative regulation of FLT3 / PTK6 Regulates RTKs and Their Effectors AKT1 and DOK1 / Constitutive Signaling by NOTCH1 HD Domain Mutants / Regulation of TBK1, IKKε-mediated activation of IRF3, IRF7 upon TLR3 ligation / IRAK2 mediated activation of TAK1 complex upon TLR7/8 or 9 stimulation / NOTCH2 Activation and Transmission of Signal to the Nucleus / TICAM1,TRAF6-dependent induction of TAK1 complex / TICAM1-dependent activation of IRF3/IRF7 / APC/C:Cdc20 mediated degradation of Cyclin B / Regulation of FZD by ubiquitination / Downregulation of ERBB4 signaling / p75NTR recruits signalling complexes / APC-Cdc20 mediated degradation of Nek2A / InlA-mediated entry of Listeria monocytogenes into host cells / TRAF6 mediated IRF7 activation in TLR7/8 or 9 signaling / Regulation of innate immune responses to cytosolic DNA / TRAF6-mediated induction of TAK1 complex within TLR4 complex / Regulation of pyruvate metabolism / cellular response to interleukin-4 / NF-kB is activated and signals survival / Downregulation of ERBB2:ERBB3 signaling / ossification / innate immune response in mucosa / Pexophagy / NRIF signals cell death from the nucleus / DNA damage response, signal transduction by p53 class mediator / Regulation of PTEN localization / VLDLR internalisation and degradation / Activated NOTCH1 Transmits Signal to the Nucleus / Synthesis of active ubiquitin: roles of E1 and E2 enzymes Similarity search - Function
Ribosomal protein L6, N-terminal / Ribosomal protein L6, N-terminal domain / Ribosomal protein L30e / Ribosomal protein L2, archaeal-type / Ribosomal L15/L27a, N-terminal / Ribosomal protein L28e / Ribosomal protein L23 / Ribosomal L28e/Mak16 / Ribosomal L28e protein family / metallochaperone-like domain ...Ribosomal protein L6, N-terminal / Ribosomal protein L6, N-terminal domain / Ribosomal protein L30e / Ribosomal protein L2, archaeal-type / Ribosomal L15/L27a, N-terminal / Ribosomal protein L28e / Ribosomal protein L23 / Ribosomal L28e/Mak16 / Ribosomal L28e protein family / metallochaperone-like domain / TRASH domain / Ribosomal protein L41 / Ribosomal protein L41 / Ribosomal protein L29e / Ribosomal L29e protein family / Ribosomal protein L13e, conserved site / Ribosomal protein L13e signature. / Ribosomal protein L22e / Ribosomal protein L22e superfamily / Ribosomal L22e protein family / Ribosomal protein L10e, conserved site / Ribosomal protein L10e signature. / Ribosomal protein L27e, conserved site / Ribosomal protein L27e signature. / Ribosomal protein L10e / Ribosomal protein L38e / Ribosomal protein L38e superfamily / Ribosomal L38e protein family / Ribosomal protein L44e signature. / : / Ribosomal protein L24e, conserved site / Ribosomal protein L24e signature. / : / Ribosomal protein L19, eukaryotic / Ribosomal protein L19/L19e conserved site / Ribosomal protein L19e signature. / Ribosomal protein L6e signature. / Ribosomal protein L13e / Ribosomal protein L13e / 60S ribosomal protein L18a/ L20, eukaryotes / : / Ribosomal protein L44e / Ribosomal protein L44 / Ribosomal protein L34e, conserved site / Ribosomal protein L34e signature. / Ribosomal protein L5 eukaryotic, C-terminal / Ribosomal L18 C-terminal region / Ribosomal protein L30e signature 1. / 50S ribosomal protein L18Ae/60S ribosomal protein L20 and L18a / Ribosomal L40e family / Ribosomal protein 50S-L18Ae/60S-L20/60S-L18A / Ribosomal proteins 50S-L18Ae/60S-L20/60S-L18A / Ribosomal protein L23/L25, N-terminal / Ribosomal protein L23, N-terminal domain / Ribosomal_L40e / Ribosomal protein L40e / Ribosomal protein L40e superfamily / Eukaryotic Ribosomal Protein L27, KOW domain / Ribosomal protein 60S L18 and 50S L18e / Ribosomal Protein L6, KOW domain / Ribosomal protein L18/L18-A/B/e, conserved site / Ribosomal protein L18e signature. / Ribosomal protein L30e signature 2. / Ribosomal protein L27e / Ribosomal protein L27e superfamily / Ribosomal L27e protein family / Ribosomal protein L36e signature. / Ribosomal protein L35Ae, conserved site / Ribosomal protein L30e, conserved site / Ribosomal protein L35Ae signature. / Ribosomal protein L39e, conserved site / Ribosomal protein L39e signature. / : / Ribosomal protein L6e / Ribosomal protein L34Ae / Ribosomal protein L34e / 60S ribosomal protein L19 / Ribosomal protein L30/YlxQ / Ribosomal protein L7A/L8 / 60S ribosomal protein L6E / 60S ribosomal protein L35 / Ribosomal protein L13, eukaryotic/archaeal / Ribosomal protein L18e / 60S ribosomal protein L4, C-terminal domain / 60S ribosomal protein L4 C-terminal domain / Ribosomal protein L7, eukaryotic / Ribosomal protein L30, N-terminal / Ribosomal protein L31e, conserved site / Ribosomal L30 N-terminal domain / Ribosomal protein L31e signature. / Ribosomal protein L37ae / Ribosomal L37ae protein family / Ribosomal protein L36e / Ribosomal protein L36e domain superfamily / Ribosomal protein L36e / Ribosomal_L19e / Ribosomal protein L19/L19e / Ribosomal protein L19/L19e, domain 1 / Ribosomal protein L19/L19e superfamily / Ribosomal protein L19e, N-terminal domain Similarity search - Domain/homology
Large ribosomal subunit protein eL33 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL22 / Large ribosomal subunit protein eL13 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein uL6 / Large ribosomal subunit protein eL22 / Large ribosomal subunit protein uL4 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL13 ...Large ribosomal subunit protein eL33 / Large ribosomal subunit protein uL30 / Large ribosomal subunit protein uL22 / Large ribosomal subunit protein eL13 / Large ribosomal subunit protein uL16 / Large ribosomal subunit protein uL6 / Large ribosomal subunit protein eL22 / Large ribosomal subunit protein uL4 / Large ribosomal subunit protein uL3 / Large ribosomal subunit protein uL13 / Large ribosomal subunit protein uL29 / Large ribosomal subunit protein uL15 / Large ribosomal subunit protein uL18 / Large ribosomal subunit protein eL21 / Large ribosomal subunit protein eL28 / Large ribosomal subunit protein eL29 / Large ribosomal subunit protein eL34 / Large ribosomal subunit protein eL14 / Large ribosomal subunit protein uL24 / Large ribosomal subunit protein eL15 / Large ribosomal subunit protein eL27 / Large ribosomal subunit protein eL43 / Large ribosomal subunit protein eL37 / Large ribosomal subunit protein eL8 / Large ribosomal subunit protein uL23 / Large ribosomal subunit protein uL14 / Large ribosomal subunit protein eL30 / Large ribosomal subunit protein eL39 / Large ribosomal subunit protein eL31 / Large ribosomal subunit protein eL32 / Large ribosomal subunit protein uL5 / Large ribosomal subunit protein uL2 / Small ribosomal subunit protein eS32 / Ubiquitin-ribosomal protein eL40 fusion protein / Large ribosomal subunit protein eL38 / Large ribosomal subunit protein eL24 / Large ribosomal subunit protein eL42 / Large ribosomal subunit protein eL19 / Large ribosomal subunit protein eL20 / Large ribosomal subunit protein eL6 / Large ribosomal subunit protein eL18 / Large ribosomal subunit protein eL36 Similarity search - Component
Biological species
Homo sapiens (human) / Human (human)
Method
single particle reconstruction / cryo EM / Resolution: 2.72 Å
Japan Agency for Medical Research and Development (AMED)
JP20gm1410001
Japan
Citation
Journal: Elife / Year: 2022 Title: METTL18-mediated histidine methylation of RPL3 modulates translation elongation for proteostasis maintenance. Authors: Eriko Matsuura-Suzuki / Tadahiro Shimazu / Mari Takahashi / Kaoru Kotoshiba / Takehiro Suzuki / Kazuhiro Kashiwagi / Yoshihiro Sohtome / Mai Akakabe / Mikiko Sodeoka / Naoshi Dohmae / ...Authors: Eriko Matsuura-Suzuki / Tadahiro Shimazu / Mari Takahashi / Kaoru Kotoshiba / Takehiro Suzuki / Kazuhiro Kashiwagi / Yoshihiro Sohtome / Mai Akakabe / Mikiko Sodeoka / Naoshi Dohmae / Takuhiro Ito / Yoichi Shinkai / Shintaro Iwasaki / Abstract: Protein methylation occurs predominantly on lysine and arginine residues, but histidine also serves as a methylation substrate. However, a limited number of enzymes responsible for this modification ...Protein methylation occurs predominantly on lysine and arginine residues, but histidine also serves as a methylation substrate. However, a limited number of enzymes responsible for this modification have been reported. Moreover, the biological role of histidine methylation has remained poorly understood to date. Here, we report that human METTL18 is a histidine methyltransferase for the ribosomal protein RPL3 and that the modification specifically slows ribosome traversal on Tyr codons, allowing the proper folding of synthesized proteins. By performing an in vitro methylation assay with a methyl donor analog and quantitative mass spectrometry, we found that His245 of RPL3 is methylated at the τ- position by METTL18. Structural comparison of the modified and unmodified ribosomes showed stoichiometric modification and suggested a role in translation reactions. Indeed, genome-wide ribosome profiling and an in vitro translation assay revealed that translation elongation at Tyr codons was suppressed by RPL3 methylation. Because the slower elongation provides enough time for nascent protein folding, RPL3 methylation protects cells from the cellular aggregation of Tyr-rich proteins. Our results reveal histidine methylation as an example of a ribosome modification that ensures proteome integrity in cells.
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi