Journal: Proc Natl Acad Sci U S A / Year: 2021 Title: Comparative structural analysis of human Na1.1 and Na1.5 reveals mutational hotspots for sodium channelopathies. Authors: Xiaojing Pan / Zhangqiang Li / Xueqin Jin / Yanyu Zhao / Gaoxingyu Huang / Xiaoshuang Huang / Zilin Shen / Yong Cao / Mengqiu Dong / Jianlin Lei / Nieng Yan / Abstract: Among the nine subtypes of human voltage-gated sodium (Na) channels, the brain and cardiac isoforms, Na1.1 and Na1.5, each carry more than 400 missense mutations respectively associated with epilepsy ...Among the nine subtypes of human voltage-gated sodium (Na) channels, the brain and cardiac isoforms, Na1.1 and Na1.5, each carry more than 400 missense mutations respectively associated with epilepsy and cardiac disorders. High-resolution structures are required for structure-function relationship dissection of the disease variants. We report the cryo-EM structures of the full-length human Na1.1-β4 complex at 3.3 Å resolution here and the Na1.5-E1784K variant in the accompanying paper. Up to 341 and 261 disease-related missense mutations in Na1.1 and Na1.5, respectively, are resolved. Comparative structural analysis reveals several clusters of disease mutations that are common to both Na1.1 and Na1.5. Among these, the majority of mutations on the extracellular loops above the pore domain and the supporting segments for the selectivity filter may impair structural integrity, while those on the pore domain and the voltage-sensing domains mostly interfere with electromechanical coupling and fast inactivation. Our systematic structural delineation of these mutations provides important insight into their pathogenic mechanism, which will facilitate the development of precise therapeutic interventions against various sodium channelopathies.
History
Deposition
Jan 4, 2021
-
Header (metadata) release
Apr 7, 2021
-
Map release
Apr 7, 2021
-
Update
Nov 13, 2024
-
Current status
Nov 13, 2024
Processing site: PDBj / Status: Released
-
Structure visualization
Movie
Surface view with section colored by density value
In the structure databanks used in Yorodumi, some data are registered as the other names, "COVID-19 virus" and "2019-nCoV". Here are the details of the virus and the list of structure data.
Jan 31, 2019. EMDB accession codes are about to change! (news from PDBe EMDB page)
EMDB accession codes are about to change! (news from PDBe EMDB page)
The allocation of 4 digits for EMDB accession codes will soon come to an end. Whilst these codes will remain in use, new EMDB accession codes will include an additional digit and will expand incrementally as the available range of codes is exhausted. The current 4-digit format prefixed with “EMD-” (i.e. EMD-XXXX) will advance to a 5-digit format (i.e. EMD-XXXXX), and so on. It is currently estimated that the 4-digit codes will be depleted around Spring 2019, at which point the 5-digit format will come into force.
The EM Navigator/Yorodumi systems omit the EMD- prefix.
Related info.:Q: What is EMD? / ID/Accession-code notation in Yorodumi/EM Navigator
Yorodumi is a browser for structure data from EMDB, PDB, SASBDB, etc.
This page is also the successor to EM Navigator detail page, and also detail information page/front-end page for Omokage search.
The word "yorodu" (or yorozu) is an old Japanese word meaning "ten thousand". "mi" (miru) is to see.
Related info.:EMDB / PDB / SASBDB / Comparison of 3 databanks / Yorodumi Search / Aug 31, 2016. New EM Navigator & Yorodumi / Yorodumi Papers / Jmol/JSmol / Function and homology information / Changes in new EM Navigator and Yorodumi