+
Open data
-
Basic information
Entry | ![]() | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Title | V-ATPase from Saccharomyces cerevisiae, State 2 | |||||||||
![]() | V-ATPase State 2 | |||||||||
![]() |
| |||||||||
![]() | MEMBRANE PROTEIN | |||||||||
Function / homology | ![]() cell wall mannoprotein biosynthetic process / ATPase-coupled ion transmembrane transporter activity / protein localization to vacuolar membrane / cellular response to alkaline pH / proton-transporting V-type ATPase, V1 domain / polyphosphate metabolic process / Insulin receptor recycling / Transferrin endocytosis and recycling / ROS and RNS production in phagocytes / Amino acids regulate mTORC1 ...cell wall mannoprotein biosynthetic process / ATPase-coupled ion transmembrane transporter activity / protein localization to vacuolar membrane / cellular response to alkaline pH / proton-transporting V-type ATPase, V1 domain / polyphosphate metabolic process / Insulin receptor recycling / Transferrin endocytosis and recycling / ROS and RNS production in phagocytes / Amino acids regulate mTORC1 / Golgi lumen acidification / P-type proton-exporting transporter activity / proton-transporting two-sector ATPase complex, catalytic domain / vacuolar transport / vacuolar proton-transporting V-type ATPase, V1 domain / vacuolar proton-transporting V-type ATPase, V0 domain / endosomal lumen acidification / vacuole organization / protein targeting to vacuole / fungal-type vacuole / vacuolar proton-transporting V-type ATPase complex / cellular hyperosmotic response / vacuolar acidification / proton-transporting V-type ATPase complex / fungal-type vacuole membrane / phosphatidylinositol-3,5-bisphosphate binding / proton transmembrane transporter activity / intracellular copper ion homeostasis / ATP metabolic process / H+-transporting two-sector ATPase / Neutrophil degranulation / proton-transporting ATPase activity, rotational mechanism / RNA endonuclease activity / proton-transporting ATP synthase activity, rotational mechanism / proton transmembrane transport / cell periphery / transmembrane transport / endocytosis / ATPase binding / protein-containing complex assembly / intracellular iron ion homeostasis / membrane raft / Golgi membrane / endoplasmic reticulum membrane / ATP hydrolysis activity / ATP binding / membrane Similarity search - Function | |||||||||
Biological species | ![]() ![]() | |||||||||
Method | single particle reconstruction / cryo EM / Resolution: 3.8 Å | |||||||||
![]() | Vasanthakumar T / Keon KA / Bueler SA / Jaskolka MC / Rubinstein JL | |||||||||
Funding support | ![]()
| |||||||||
![]() | ![]() Title: Coordinated conformational changes in the V complex during V-ATPase reversible dissociation. Authors: Thamiya Vasanthakumar / Kristine A Keon / Stephanie A Bueler / Michael C Jaskolka / John L Rubinstein / ![]() ![]() Abstract: Vacuolar-type ATPases (V-ATPases) are rotary enzymes that acidify intracellular compartments in eukaryotic cells. These multi-subunit complexes consist of a cytoplasmic V region that hydrolyzes ATP ...Vacuolar-type ATPases (V-ATPases) are rotary enzymes that acidify intracellular compartments in eukaryotic cells. These multi-subunit complexes consist of a cytoplasmic V region that hydrolyzes ATP and a membrane-embedded V region that transports protons. V-ATPase activity is regulated by reversible dissociation of the two regions, with the isolated V and V complexes becoming autoinhibited on disassembly and subunit C subsequently detaching from V. In yeast, assembly of the V and V regions is mediated by the regulator of the ATPase of vacuoles and endosomes (RAVE) complex through an unknown mechanism. We used cryogenic-electron microscopy of yeast V-ATPase to determine structures of the intact enzyme, the dissociated but complete V complex and the V complex lacking subunit C. On separation, V undergoes a dramatic conformational rearrangement, with its rotational state becoming incompatible for reassembly with V. Loss of subunit C allows V to match the rotational state of V, suggesting how RAVE could reassemble V and V by recruiting subunit C. | |||||||||
History |
|
-
Structure visualization
Supplemental images |
---|
-
Downloads & links
-EMDB archive
Map data | ![]() | 91.1 MB | ![]() | |
---|---|---|---|---|
Header (meta data) | ![]() ![]() | 26.7 KB 26.7 KB | Display Display | ![]() |
Images | ![]() | 108.7 KB | ||
Filedesc metadata | ![]() | 8.7 KB | ||
Archive directory | ![]() ![]() | HTTPS FTP |
-Validation report
Summary document | ![]() | 506.5 KB | Display | ![]() |
---|---|---|---|---|
Full document | ![]() | 506.1 KB | Display | |
Data in XML | ![]() | 6.7 KB | Display | |
Data in CIF | ![]() | 7.6 KB | Display | |
Arichive directory | ![]() ![]() | HTTPS FTP |
-Related structure data
Related structure data | ![]() 7tmsMC ![]() 7tmmC ![]() 7tmoC ![]() 7tmpC ![]() 7tmqC ![]() 7tmrC ![]() 7tmtC M: atomic model generated by this map C: citing same article ( |
---|---|
Similar structure data | Similarity search - Function & homology ![]() |
-
Links
EMDB pages | ![]() ![]() |
---|---|
Related items in Molecule of the Month |
-
Map
File | ![]() | ||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Annotation | V-ATPase State 2 | ||||||||||||||||||||||||||||||||||||
Projections & slices | Image control
Images are generated by Spider. | ||||||||||||||||||||||||||||||||||||
Voxel size | X=Y=Z: 1.20167 Å | ||||||||||||||||||||||||||||||||||||
Density |
| ||||||||||||||||||||||||||||||||||||
Symmetry | Space group: 1 | ||||||||||||||||||||||||||||||||||||
Details | EMDB XML:
|
-Supplemental data
-
Sample components
+Entire : V-ATPase, State 2
+Supramolecule #1: V-ATPase, State 2
+Macromolecule #1: H(+)-transporting two-sector ATPase
+Macromolecule #2: Vacuolar proton pump subunit B
+Macromolecule #3: V-ATPase subunit E
+Macromolecule #4: V-type proton ATPase subunit G
+Macromolecule #5: V-type proton ATPase subunit D
+Macromolecule #6: V-type proton ATPase subunit F
+Macromolecule #7: V-type proton ATPase subunit C
+Macromolecule #8: V-type proton ATPase subunit H
+Macromolecule #9: V-type proton ATPase subunit a, vacuolar isoform
+Macromolecule #10: V0 assembly protein 1
+Macromolecule #11: V-type proton ATPase subunit c''
+Macromolecule #12: V-type proton ATPase subunit d
+Macromolecule #13: V-type proton ATPase subunit e
+Macromolecule #14: Yeast V-ATPase subunit f
+Macromolecule #15: V-type proton ATPase subunit c
+Macromolecule #16: V-type proton ATPase subunit c'
+Macromolecule #17: ADENOSINE-5'-DIPHOSPHATE
-Experimental details
-Structure determination
Method | cryo EM |
---|---|
![]() | single particle reconstruction |
Aggregation state | particle |
-
Sample preparation
Buffer | pH: 7.4 |
---|---|
Vitrification | Cryogen name: ETHANE-PROPANE |
-
Electron microscopy
Microscope | TFS KRIOS |
---|---|
Image recording | Film or detector model: FEI FALCON IV (4k x 4k) / Average electron dose: 43.0 e/Å2 |
Electron beam | Acceleration voltage: 300 kV / Electron source: ![]() |
Electron optics | Illumination mode: FLOOD BEAM / Imaging mode: BRIGHT FIELD / Nominal defocus max: 2.0 µm / Nominal defocus min: 0.3 µm |
Experimental equipment | ![]() Model: Titan Krios / Image courtesy: FEI Company |
-
Image processing
Startup model | Type of model: NONE |
---|---|
Final reconstruction | Resolution.type: BY AUTHOR / Resolution: 3.8 Å / Resolution method: FSC 0.143 CUT-OFF / Number images used: 56915 |
Initial angle assignment | Type: MAXIMUM LIKELIHOOD |
Final angle assignment | Type: MAXIMUM LIKELIHOOD |